Многожильные пружины. Упругие элементы Пружины и другие упругие элементы

УПРУГИЕ ЭЛЕМЕНТЫ. ПРУЖИНЫ

Колёсные пары вагонов связаны с рамой тележки и кузовом вагона через систему упругих элементов и гасителей колебаний, называемую рессорным подвешиванием. Рессорное подвешивание за счет упругих элементов обеспечивает смягчение толчков и ударов, передаваемых колёсами кузову, а также за счет работы гасителей, гашение колебаний, возникающих при движении вагона. Кроме того (в некоторых случаях), рессоры и пружины передают направляющие усилия со стороны колёс на раму тележки вагона.
Когда колёсная пара проходит какую-либо неровность пути (стыки, крестовины и т. п.), возникают динамические нагрузки, в том числе ударные. Появлению динамических нагрузок способствуют также дефекты колёсной пары – местные пороки поверхностей катания, эксцентричность посадки колеса на ось, неуравновешенность колёсной пары и др. При отсутствии рессорного подвешивания кузов жёстко воспринимал бы все динамические воздействия и испытывал большие ускорения.
Упругие элементы, расположенные между колёсными парами и кузовом, под воздействием динамической силы со стороны колёсной пары деформируются и совершают колебательные движения вместе с кузовом, причём период таких колебаний во много раз больше, чем период изменения возмущающей силы. Вследствие этого уменьшаются ускорения и силы, воспринимаемые кузовом.

Смягчающее действие рессорного подвешивания при передаче кузову толчков рассмотрим на примере движения вагона по рельсовому пути. При качении колеса вагона по рельсовому пути из-за неровности рельса и дефектов поверхности катания колеса кузов вагона, при безрессорном соединении его с колёсными парами будет копировать траекторию движения колеса (рис.а ). Траектория движения кузова вагона (линия а1-в1-с1) совпадает с неровностью пути (линия а-в-с). При наличии рессорного подвешивания вертикальные толчки (рис.б ) передаются кузову через упругие элементы, которые, смягчая и частично поглощая толчки, обеспечивают более спокойный и плавный ход вагона, предохраняют подвижной состав и путь от преждевременного износа и повреждений. Траекторию движения кузова при этом можно изобразить линией а1-в2-с2, которая имеет более пологий вид по сравнению с линией а в с. Как видно из рис. б , период колебаний кузова на рессорах во много раз больше, чем период изменения возмущающей силы. Вследствие этого уменьшаются ускорения и силы, воспринимаемые кузовом.

Пружины широко применяются в вагоностроении, в тележках грузовых и пассажирских вагонов, в ударно-тяговых приборах. Различают пружины винтовые и спиральные. Винтовые пружины изготовляют завивкой из прутков стали круглого, квадратного или прямоугольного сечения. По форме винтовые пружины бывают цилиндрические и конические.

Разновидности винтовых пружин
а - цилиндрические с прямоугольным сечением прутка; б - цилиндрические с круглым сечением прутка; в - конические с круглым сечением прутка; г - конические с прямоугольным сеченим прутка

В рессорном подвешивании современных вагонов наибольшее распространение получили цилиндрические пружины. Они просты в изготовлении, надежны в работе и хорошо амортизируют вертикальные и горизонтальные толчки и удары. Однако они не могут гасить колебания обрессоренных масс вагона и по­этому применяются только в сочетании с гасителями колебаний.
Пружины изготавливают в соответствии с ГОСТ 14959. Опорные поверхности пружин делают плоскими и перпендикулярными к оси. Для этого концы заготовки пружины оттягиваются на 1/3 длины окружности витка. В результате этого достигается плавный переход от круглого к прямоугольному сечению. Высота оттянутого конца пружины должна быть не более 1/3 диаметра прутка d, а ширина - не менее 0,7d.
Характеристиками цилиндрической пружины являются: диаметр прутка d, средний диаметр пружины Д высота пружины в свободном Нсв и сжатом Нсж состояниях, число рабочих витков nр и индекс т. Индексом пружины называется отношение средне­го диаметра пружины к диаметру прутка, т.е. т = D/d.

Цилиндричекая пружина и ее параметры

Материал для пружин и рессор

Материал для рессор и пружин должен обладать высокой статической, динамической, ударной прочностью, достаточной пластичностью и сохранять свою упругость в течение всего срока службы рессоры или пружины. Все эти свойства материала зависят от его химического состава, структуры, термической обработки и состояния поверхности упругого элемента. Рессоры и пружины для вагонов изготовляются из стали 55С2, 55С2А, 60С2, 60С2А (ГОСТ 14959–79). Химический состав сталей в процентах: С = 0,52 - 0,65; Mn = 0,6 - 0,9; Si = 1,5 - 2,0; S, P, Ni не более 0,04 каждого; Cr не более 0,03. Механические свойства термически обработанных сталей 55С2 и 60С2: предел прочности 1300 МПа при относительном удлинении 6 и 5 % и сужение площади сечения 30 и 25 %, соответственно.
При изготовлении пружины и рессоры подвергаются термической обработке – закалке и отпуску.
Прочность и износоустойчивость рессор и пружин в большей степени зависит от состояния поверхности металла. Всякие повреждения поверхности (мелкие трещины, плены, закаты, вмятины, риски и тому подобные дефекты) способствуют концентрации напряжений при нагрузках и резко понижают предел выносливости материала. Для поверхностного упрочнения на заводах применяют дробеструйную обработку рессорных листов и пружин.
Сущность этого способа заключается в том, что упругие элементы подвергают действию потока металлической дроби диаметром 0,6–1 мм, выбрасываемой с большой скоростью 60–80 м/с на поверхность листа рессоры или пружину. Скорость полёта дроби подбирается такой, чтобы в месте удара создавалось напряжение выше предела упругости, а это вызывает в поверхностном слое металла пластическую деформацию (наклёп), что в конечном итоге упрочняет поверхностный слой упругого элемента.
Кроме дробеструйной обработки, для упрочнения пружин могут применять заневоливание, заключающееся в выдерживании пружин в деформированном состоянии определённое время. Пружина завивается таким образом, что расстояния между витками в свободном состоянии делаются на некоторую величину больше, чем по чертежу. После термической обработки пружину снимают до соприкосновения витков и выдерживают в таком состоянии от 20 до 48 часов, затем её разогревают. При сжатии в наружной зоне поперечного сечения прутка создаются остаточные напряжения обратного знака, вследствие чего при её работе истинные напряжения оказываются меньше, чем они были бы без заневоливания.

На фото - новые цилиндрические пружины

Навивка пружин в нагретом состоянии

Проверка упругости пружины

Цилиндрические пружины в зависимости от нагрузки, воспринимаемой ими, делают однорядными или многорядными. Многорядные пружины состоят из двух, трёх и более пружин, вложенных одна в другую. В двухрядных наружная пружина изготовляется из прутка большего диаметра, но с малым числом витков, внутренняя – из прутка меньшего диаметра и с большим числом витков. Для того чтобы при сжатии витки внутренней пружины не зажимались между витками наружной, обе пружины завивают в разные стороны. В многорядных пружинах размеры прутков также уменьшаются от наружной пружины к внутренней, а число витков соответственно увеличивается.

Многорядные пружины позволяют при тех же габаритах, что и у однорядной пружины, иметь большую жёсткость. Широкое применение двухрядные и трёхрядные пружины получили в тележках грузовых и пассажирских вагонов, а также поглощающих аппаратах автосцепных устройств. Силовая характеристика многорядных пружин является линейной.
В некоторых конструкциях двухрядных пружин (например, в тележках 18-578, 18-194) наружные пружины рессорного комплекта выше внутренних, благодаря чему жёсткость подвешивания у порожнего вагона в 3 раза меньше, чем у гружёного.

Пружины установлены на вагоне

В каждой машине есть специфические детали, принципиально отличающиеся от всех остальных. Их называют упругими элементами. Упругие элементы имеют разнообразные, весьма непохожие друг на друга конструкции. Поэтому можно дать общее определение.

Упругие элементы – детали, жёсткость которых намного меньше, чем у остальных, а деформации выше.

Благодаря этому своему свойству упругие элементы первыми воспринимают удары, вибрации, деформации.

Чаще всего упругие элементы легко обнаружить при осмотре машины, как, например, резиновые покрышки колёс, пружины и рессоры, мягкие кресла водителей и машинистов.

Иногда упругий элемент скрыт под видом другой детали, например, тонкого торсионного вала, шпильки с длинной тонкой шейкой, тонкостенного стержня, прокладки, оболочки и т.п. Однако и здесь опытный конструктор сможет распознать и применять такой "замаскированный" упругий элемент именно по сравнительно малой жёсткости.

На железной дороге из-за тяжести транспорта деформации деталей пути достаточно велики. Здесь упругими элементами, наряду с рессорами подвижного состава, фактически становятся рельсы, шпалы (особенно деревянные, а не бетонные) и грунт путевой насыпи.

Упругие элементы находят широчайшее применение:

è для амортизации (снижение ускорений и сил инерции при ударах и вибрации за счёт значительно большего времени деформации упругого элемента по сравнению с жёсткими деталями);

è для создания постоянных сил (например, упругие и разрезные шайбы под гайкой создают постоянную силу трения в витках резьбы, что препятствует самоотвинчиванию);

è для силового замыкания механизмов (чтобы исключить нежелательные зазоры);

è для аккумуляции (накопления) механической энергии (часовые пружины, пружина оружейного бойка, дуга лука, резина рогатки, согнутая вблизи студенческого лба линейка и т.д.);

è для измерения сил (пружинные весы основаны на связи веса и деформации измерительной пружины по закону Гука).

Обычно упругие элементы выполняются в виде пружин различных конструкций.

Основное распространение в машинах имеют упругие пружины сжатия и растяжения. В этих пружинах витки подвержены кручению. Цилиндрическая форма пружин удобна для размещения их в машинах.

Основной характеристикой пружины, как и всякого упругого элемента, является жёсткость или обратная ей податливость. Жёсткость K определяется зависимостью упругой силы F от деформации x . Если эту зависимость можно считать линейной, как в законе Гука, то жёсткость находят делением силы на деформацию K = F / x .

Если зависимость нелинейна, как это и бывает в реальных конструкциях, жёсткость находят, как производную от силы по деформации K =F/ x.

Очевидно, что здесь нужно знать вид функции F =f (x ) .

Для больших нагрузок при необходимости рассеяния энергии вибрации и ударов применяют пакеты упругих элементов (пружин).

Идея состоит в том, что при деформации составных или слоистых пружин (рессор) энергия рассеивается за счёт взаимного трения элементов.


Пакет тарельчатых пружин используется для амортизации ударов и вибрации в межтележечной упругой муфте электровозов ЧС4 и ЧС4 Т.

В развитие этой идеи по инициативе сотрудников нашей академии на Куйбышевской Дороге применяются тарельчатые пружины (шайбы) в болтовых соединениях накладок рельсовых стыков. Пружины подкладываются под гайки перед затяжкой и обеспечивают высокие постоянные силы трения в соединении, к тому же разгружая болты.

Материалы для упругих элементов должны иметь высокие упругие свойства, а главное, не терять их со временем.

Основные материалы для пружин – высокоуглеродистые стали 65,70, марганцовистые стали 65Г, кремнистые стали 60С2А, хромованадиевая сталь 50ХФА и т.п. Все эти материалы имеют более высокие механические свойства по сравнению с обычными конструкционными сталями.

В 1967 году в Самарском Аэрокосмическом университете был изобретён и запатентован материал, названный металлорезиной "МР". Материал изготавливается из скомканной, спутанной металлической проволоки, которая затем прессуется в необходимые формы.

Колоссальное достоинство металлорезины в том, что она великолепно сочетает прочность металла с упругостью резины и, кроме того, за счёт значительного межпроволочного трения рассеивает (демпфирует) энергию колебаний, являясь высокоэффективным средством виброзащиты.

Густоту спутанной проволоки и силу прессования можно регулировать, получая заданные значения жёсткости и демпфирования металлорезины в очень широком диапазоне.

Металлорезина, несомненно, имеет перспективное будущее в качестве материала для изготовления упругих элементов.

Упругие элементы требуют весьма точных расчётов. В частности, их обязательно рассчитывают на жёсткость, поскольку это главная характеристика.

Однако конструкции упругих элементов столь разнообразны, а расчётные методики столь сложны, что привести их в какой-либо обобщённой формуле невозможно. Тем более в рамках нашего курса, который на этом закончен.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. По какому признаку в конструкции машины можно найти упругие элементы?

2. Для каких задач применяются упругие элементы?

3. Какая характеристика упругого элемента считается главной?

4. Из каких материалов следует изготавливать упругие элементы?

5. Каким образом на Куйбышевской дороге применяются тарельчатые шайбы-пружины?

ВВЕДЕНИЕ…………………………………………………………………………………
1. ОБЩИЕ ВОПРОСЫ РАСЧЕТА ДЕТАЛЕЙ МАШИН…………………………………...
1.1. Ряды предпочтительных чисел………………………………………………...
1.2. Основные критерии работоспособности деталей машин…………………… 1.3. Расчет на сопротивление усталости при переменных напряжениях………..
1.3.1. Переменные напряжения…………………………………………….. 1.3.2. Пределы выносливости……………………………………………….. 1.4. Коэффициенты безопасности………………………………………………….
2. МЕХАНИЧЕСКИЕ ПЕРЕДАЧИ…………………………………………………………... 2.1. Общие сведения……………………………………………………………….. 2.2. Характеристика передач привода……………………………………………..
3. ЗУБЧАТЫЕ ПЕРЕДАЧИ ………………………………………………………………….. 4.1. Условия работоспособности зубьев…………………………………………. 4.2. Материалы зубчатых передач…………………………………………........... 4.3. Характерные виды разрушения зубьев……………………………………… 4.4. Расчетная нагрузка……………………………………………………………. 4.4.1. Коэффициенты расчетной нагрузки…………………………………. 4.4.2. Точность зубчатых передач………………………………………….. 4.5. Цилиндрические зубчатые передачи………………………………………
4.5.1. Силы в зацеплении……………………………………………………. 4.5.2. Расчет на сопротивление контактной усталости……………………. 4.5.3. Расчет на сопротивление изгибной усталости……………………… 4.6. Конические зубчатые передачи……………………………………………… 4.6.1. Основные параметры…………………………………………………. 4.6.2. Силы в зацеплении……………………………………………………. 4.6.3. Расчет на сопротивление контактной усталости…………………… 4.6.4. Расчет на сопротивление усталости при изгибе…………………….
5. ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ…………………………………………………………………. 5.1. Общие сведения……………………………………………………………….. 5.2. Силы в зацеплении……………………………………………………………. 5.3. Материалы червячных передач……………………………………………… 5.4. Расчет на прочность…………………………………………………………..
5.5. Тепловой расчет………………………………………………………………. 6. ВАЛЫ И ОСИ………………………………………………………………………………. 6.1. Общие сведения……………………………………………………………….. 6.2. Расчетная нагрузка и критерий работоспособности………………………… 6.3. Проектировочный расчет валов………………………………………………. 6.4. Расчетная схема и порядок расчета вала…………………………………….. 6.5. Расчет на статическую прочность……………………………………………. 6.6. Расчет на сопротивление усталости………………………………………….. 6.7. Расчет валов на жесткость и виброустойчивость……………………………
7. ПОДШИПНИКИ КАЧЕНИЯ ……………………………………………………………… 7.1. Классификация подшипников качения……………………………………… 7.2. Обозначение подшипников по ГОСТ 3189-89……………………………… 7.3. Особенности радиально-упорных подшипников…………………………… 7.4. Схемы установки подшипников на валах…………………………………… 7.5. Расчетная нагрузка на радиально-упорные подшипники………………….. 7.6. Причины выхода из строя и критерии расчета………………………........... 7.7. Материалы деталей подшипников……..……………………………………. 7.8. Подбор подшипников по статической грузоподъемности (ГОСТ 18854-94)………………………………………………………………
7.9. Подбор подшипников по динамической грузоподъемности (ГОСТ 18855-94)……………………………………………………………… 7.9.1. Исходные данные……………………………………………………. 7.9.2. Основание подбора………………………………………………….. 7.9.3. Особенности подбора подшипников………………………………..
8. ПОДШИПНИКИ СКОЛЬЖЕНИЯ………………………………………………………….
8.1. Общие сведения ……………………………………………………………..
8.2. Условия работы и режимы трения ……………………………………………
7. МУФТЫ
7.1. Жёсткие муфты
7.2. Компенсирующие муфты
7.3. Подвижные муфты
7.4. Упругие муфты
7.5. Фрикционные муфты
8. СОЕДИНЕНИЯ ДЕТАЛЕЙ МАШИН
8.1. Неразъёмные соединения
8.1.1. Сварные соединения
Расчёт на прочность сварных швов
8.1.2. Заклёпочные соединения
8.2. Разъёмные соединения
8.2.1. РЕЗЬБОВЫЕ СОЕДИНЕНИЯ
Расчёт на прочность резьбовых соединений
8.2.2. Штифтовые соединения
8.2.3. Шпоночные соединения
8.2.4. Шлицевые соединения
9. Пружины……………………………………
| следующая лекция ==>

В качестве упругих устройств в подвесках современных автомобилей используют металлические и неметаллические элементы. Наибольшее распространение получили металлические устройства: пружины, листовые рессоры и торсионы .


Пружина подвески автомобиля с переменной жесткостью

Наиболее широко (особенно в подвесках легковых автомобилей) применяются витые пружины , изготавливаемые из стального упругого стержня круглого сечения.
При сжатии пружины по вертикальной оси, ее витки сближаются и закручиваются. Если пружина имеет цилиндрическую форму, то при ее деформации расстояние между витками сохраняется постоянным и пружина имеет линейную характеристику. Это значит, что деформация цилиндрической пружины всегда прямо пропорциональна приложенному усилию, а пружина имеет постоянную жесткость. Если изготовить витую пружину из прутка переменного сечения или придать пружине определенную форму (в виде бочонка или кокона), то такой упругий элемент будет иметь переменную жесткость. При сжатии такой пружины вначале будут сближаться менее жесткие витки, а после их соприкосновения в работу вступят более жесткие. Пружины переменной жесткости широко применяются в подвесках современных легковых автомобилей.
К достоинствам пружин, применяемых в качестве упругих элементов подвесок, следует отнести их малую массу и возможность обеспечения высокой плавности хода автомобиля. В то же время пружина не может передавать усилия в поперечной плоскости и ее применение требует наличия в подвеске сложного направляющего устройства.


Задняя рессорная подвеска :
1 - проушина рессоры;
2 - резиновая втулка;
3 - кронштейн;
4 - втулка;
5 - болт;
6 - шайбы;
7 - палец;
8 - резиновые втулки;
9 - пружинная шайба;
10 - гайка;
11 - кронштейн;
12 - втулка резиновая;
13 - втулка;
14 - пластина серьги;
15 - болт;
16 - штанга стабилизатора;
17 - коренной лист;
18 - листы рессоры;
19 - резиновый буфер хода сжатия;
20 - стремянки;
21 - накладка;
22 - балка заднего моста;
23 - амортизатор;
24 - хомут;
25 - лонжерон рамы;
26 - кронштейн стабилизатора;
27 - серьга стабилизатора

Листовая рессора служила упругим элементом подвески еще на гужевых экипажах и первых автомобилях, но она продолжает применяться и в наши дни, правда в основном на грузовых автомобилях. Типичная листовая рессора состоит из набора скрепленных между собой листов различной длины, изготовленных из пружинной стали. Листовая рессора обычно имеет форму полуэллипса.


Способы крепления рессор :
а - с витыми ушками;
б - на резиновых подушках;
в - с накладным ушком и скользящей опорой

Листы, из которых состоит рессора, имеют различную длину и кривизну. Чем меньше длина листа, тем больше должна быть его кривизна, что необходимо для более плотного взаимного прилегания листов в собранной рессоре. При такой конструкции уменьшается нагрузка на самый длинный (коренной) лист рессоры. Листы рессоры скрепляют между собой центровым болтом и хомутами. С помощью коренного листа рессора прикрепляется шарнирно обоими концами к кузову или раме и может передавать усилия от колес автомобиля на раму или кузов. Форма концов коренного листа определяется способом крепления его к раме (кузову) и необходимостью обеспечения компенсации изменения длины листа. Один из концов рессоры должен иметь возможность поворачиваться, а другой поворачиваться и перемещаться.
При деформации рессоры ее листы изгибаются и изменяют свою длину. При этом происходит трение листов друг о друга, и поэтому они требуют смазки, а между листами рессор легковых автомобилей устанавливают специальные антифрикционные прокладки. В то же время наличие трения в рессоре позволяет гасить колебания кузова и в некоторых случаях дает возможность обойтись без применения в подвеске амортизаторов. Рессорная подвеска имеет простую конструкцию, но большую массу, что и определяет наибольшее ее распространение в подвесках грузовых автомобилей и некоторых легковых автомобилях повышенной проходимости. Для уменьшения массы рессорных подвесок и улучшения плавности хода иногда применяются малолистовые и однолистовые рессоры с листом переменного по длине сечения . Довольно редко в подвесках применяются рессоры, изготовленные из армированной пластмассы.


Торсионная подвеска . В задней подвеске автомобиля Peugeot 206 используются два торсиона, соединенные с продольными рычагами. В направляющем устройстве подвески применяются трубчатые рычаги, установленные под углом к продольной оси автомобиля

Торсион - металлический упругий элемент, работающий на скручивание. Обычно торсион представляет собой сплошной металлический стержень круглого сечения с утолщениями на концах, на которых нарезаны шлицы. Встречаются подвески, в которых торсионы изготовлены из набора пластин или стержней (автомобили ЗАЗ). Одним концом торсион крепится к кузову (раме), а другим к направляющему устройству. При перемещениях колес торсионы закручиваются, обеспечивая упругую связь между колесом и кузовом. В зависимости от конструкции подвески торсионы могут располагаться как вдоль продольной оси автомобиля (обычно под полом), так и поперек. Торсионные подвески получаются компактными и легкими и дают возможность регулировки подвески путем предварительного закручивания торсионов.
Неметалические упругие элементы подвесок делятся на резиновые, пневматические и гидропневматические .
Резиновые упругие элементы присутствуют практически во всех конструкциях подвесок, но не в качестве основных, а как дополнительные, используемые для ограничения хода колес вверх и вниз. Применение дополнительных резиновых ограничителей (буферов, отбойников) ограничивает деформацию основных упругих элементов подвески, увеличивая ее жесткость при больших перемещениях и предотвращая удары металла по металлу. В последнее время резиновые элементы все чаще заменяются устройствами из синтетических материалов (полиуретан).


Упругие элементы пневматических подвесок :
а - рукавного типа;
б- двойные баллоны

В пневматических упругих элементах используются упругие свойства сжатого воздуха. Упругий элемент представляет собой баллон, изготовленный из армированной резины, в который подается под давлением воздух от специального компрессора. Форма пневмобаллонов может быть различной. Получили распространение баллоны рукавного типа (а) и двойные (двухсекционные) баллоны (б).
К преимуществам пневматических упругих элементов подвесок следует отнести высокую плавность хода автомобиля, небольшую массу и возможность поддержания постоянным уровня пола кузова, независимо от загрузки автомобиля. Подвески с пневматическими упругими элементами применяют на автобусах, грузовых и легковых автомобилях. Постоянство уровня пола грузовой платформы обеспечивает удобство погрузки и разгрузки грузового автомобиля, а для легковых автомобилей и автобусов - удобство при посадке и высадке пассажиров. Для получения сжатого воздуха на автобусах и грузовых автомобилях с пневматической тормозной системой используются штатные компрессоры, приводимые в действие от двигателя, а на легковых автомобилях устанавливают специальные компрессоры, как правило, с электроприводом (Range Rover, Mercedes, Audi).


Пневмоподвеска . На новых автомобилях Mercedes Е-класса вместо пружин стали применяться пневматические упругие элементы

Использование пневматических упругих элементов требует применения в подвеске сложного направляющего элемента и амортизаторов. Подвески с пневматическими упругими элементами некоторых современных легковых автомобилей имеют сложное электронное управление, которое обеспечивает не только постоянство уровня кузова, но и автоматическое изменение жесткости отдельных пневмобаллонов на поворотах и при торможении, для уменьшения крена кузова и клевков, что в целом повышает комфортабельность и безопасность движения.


Гидропневматический упругий элемент :
1 - сжатый газ;
2 - корпус;
3 - жидкость;
4 - к насосу;
5 - к амортизаторной стойке

Гидропневматический упругий элемент представляет собой специальную камеру, разделенную на две полости эластичной мембраной или поршнем.
Одна из полостей камеры заполнена сжатым газом (обычно азотом), а другая жидкостью (специальным маслом). Упругие свойства обеспечиваются сжатым газом, поскольку жидкость практически не сжимается. Перемещение колеса вызывает перемещение поршня, находящегося в цилиндре, заполненном жидкостью. При ходе колеса вверх поршень вытесняет из цилиндра жидкость, которая поступает в камеру и воздействует на разделительную мембрану, которая перемещается и сжимает газ. Для поддержания необходимого давления в системе используется гидравлический насос и гидроаккумулятор. Изменяя давление жидкости, поступающей под мембрану упругого элемента, можно изменять давление газа и жесткость подвески. При колебаниях кузова жидкость проходит через систему клапанов и испытывает сопротивление. Гидравлическое трение обеспечивает гасящие свойства подвески. Гидропневматические подвески обеспечивают высокую плавность хода, возможность регулировки положения кузова и эффективное гашение колебаний. К основным недостаткам такой подвески относится ее сложность и высокая стоимость.

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости .

Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).

Силу $\overline{F\ }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

\[\overline{F}=k\Delta l\left(1\right),\]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) - это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости - это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

где $G$ - модуль сдвига (величина, зависящая от материала); $d$ - диаметр проволоки; $d_p$ - диаметр витка пружины; $n$ - количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\[\left=\left[\frac{F_{upr\ }}{x}\right]=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

\[\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\dots =\sum\limits^N_{\ i=1}{\frac{1}{k_i}\left(3\right),}\]

где $k_i$ - жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

При упругих деформациях выполняется закон Гука:

Из (1.2) найдем удлинение пружины:

\[\Delta l=\frac{F}{k}\left(1.3\right).\]

Длина растянутой пружины равна:

Вычислим новую длину пружины:

Ответ. 1) $k"=10\ \frac{Н}{м}$; 2) $l"=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

Для второй пружины запишем:

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

Из равенства (2.3) получим удлинение первой пружины:

\[\Delta l_1=\frac{k_2\Delta l_2}{k_1}.\]

Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$

В каждой машине есть специфические детали, принципиально отличающиеся от всех остальных. Их называют упругими элементами. Упругие элементы имеют разнообразные, весьма непохожие друг на друга конструкции. Поэтому можно дать общее определение.

Упругими элементами называют детали машин, работа которых основана на способности изменять свою форму под воздействием внешней нагрузки и восстанавливать ее в первоначальном виде после снятия этой нагрузки.

Или другое определение:

Упругие элементы – детали, жёсткость которых намного меньше, чем у остальных, а деформации выше.

Благодаря этому своему свойству упругие элементыпервыми воспринимают удары, вибрации, деформации.

Чаще всего упругие элементы легко обнаружитьпри осмотре машины, как, например, резиновые покрышки колёс, пружины и рессоры, мягкие кресла водителей и машинистов.

Иногда упругий элемент скрыт под видом другой детали, например, тонкого торсионного вала, шпильки с длинной тонкой шейкой, тонкостенного стержня, прокладки, оболочки и т.п. Однако и здесь опытный конструктор сможет распознать и применятьтакой "замаскированный" упругий элемент именно по сравнительно малой жёсткости.

Упругие элементы находят широчайшее применение:

Для амортизации (снижение ускорений и сил инерции при ударах и вибрации за счёт значительно большего времени деформации упругого элемента по сравнению с жёсткими деталями, например рессоры автомобиля);

Для создания постоянных сил (например, упругие и разрезные шайбыпод гайкой создают постояннуюсилу трения в витках резьбы, что препятствует самоотвинчиванию , сил прижатия диска муфты сцепления);

Для силового замыкания кинематических пар, чтобы исключить влияние зазора на точность перемещения, например в распределительном кулачковом механизме двигателя внутреннего сгорания;

Для аккумуляции (накопления) механической энергии (часовые пружины, пружина оружейного бойка, дуга лука, резина рогатки и т.д.);

Для измерения сил (пружинные весы основаны на связи веса и деформации измерительной пружины по закону Гука);

Для восприятия энергии удара, например буферные пружины, применяемые в железнодорожных составах, артиллерийских орудиях.

В технических устройствах используется большое число различных упругих элементов, но наиболее распространены следующие три типа элементов, выполненных как правило из металла:

Пружины – упругие элементы, предназначенные для создания (восприятия) сосредоточенной силовой нагрузки.

Торсионы - упругие элементы, выполненные обычно в форме вала и предназначенные для создания (восприятия) сосредоточенной моментной нагрузки.

Мембраны - упругие элементы, предназначенные для создания (восприятия) распределенной по их поверхности силовой нагрузки (давления).

Упругие элементы находят самое широкое применение в различных областях техники. Их можно обнаружить и в авторучках, которыми вы пишете конспекты, и в стрелковом оружии (например, боевая пружина), и в МГКМ (клапанные пружины двигателей внутреннего сгорания, пружины в муфтах сцепления и главных фрикционах, пружины тумблеров и переключателей, резиновые кулаки в ограничителях поворота балансиров гусеничных машин и т.д. и т.п.).

В технике наряду с цилиндрическими винтовыми одножильными пружинами растяжения-сжатия широкое распространение получили моментные пружины и торсионные валы.

В данном разделе рассматриваются только два вида из большого числа упругих элементов: цилиндрические винтовые пружины растяжения-сжа­тия и торсионы .

Классификация упругих элементов

1) По виду создаваемой (воспринимаемой) нагрузки: силовые (пружины, амортизаторы, демпферы) - воспринимают сосредоточенную силу; моментные (моментные пружины, торсионы) – сосредоточенный крутящий момент (пару сил); воспринимающие распределенную нагрузку (мембраны давления, сильфоны, трубки Бурдона и т.п.).

2) По виду материала, использованного для изготовления упругого элемента: металлические (стальные, стальные нержавеющие, бронзовые, латунные пружины, торсионы, мембраны, сильфоны, трубки Бурдона) и неметаллические , изготовленные из резин и пластмасс (демпферы и амортизаторы, мембраны).

3) По виду основных напряжений, возникающих в материале упругого элемента в процессе его деформации: растяжения-сжатия (стержни, проволоки), кручения (винтовые пружины, торсионы), изгиба (пружины изгиба, рессоры).

4) В зависимости от взаимосвязи нагрузки, действующей на упругий элемент, с его деформацией: линейные (график нагрузка-деформация представляет прямую линию) и

5) В зависимости от формы и конструкции: пружины, цилиндрические винтовые , одно- и многожильные, конические винтовые, бочкообразные винтовые, тарельчатые, цилиндрические прорезные, спиральные (ленточные и круглые), плоские, рессоры (многослойные пружины изгиба), торсионы (пружинные валы), фигурные и т.п.

6) В зависимости от способа изготовления: витые, точеные, штампованные, наборные и т.п.

7) Пружины делятся на классы. 1-й класс – для больших чисел циклов нагружений (клапанные пружины двигателей автомобилей). 2-й класс для средних чисел циклов нагружений и 3-й класс – для малых чисел циклов нагружений .

8) По точности пружины делятся на группы. 1-я группа точности с допускаемыми отклонениями по силам и упругим перемещениям ± 5%, 2-я группа точности – на ± 10% и 3-я группа точности ± 20%.

Рис. 1. Некоторые упругие элементы машин: винтовые пружины - а) растяжения, б) сжатия, в) коническая сжатия, г) кручения;

д) телескопическая ленточная пружина сжатия; е) наборная тарельчатая пружина;

ж , з) кольцевые пружины; и) составная пружина сжатия; к) спиральная пружина;

л) пружина изгиба; м) рессора (наборная пружина изгиба); н) торсионный валик.

Обычно упругие элементы выполняются в виде пружин различных конструкций (рис. 1.1).


Рис. 1.1.Конструкции пружин

Основное распространение в машинах имеют упругие пружины растяжения (рис.1.1, а ), сжатия (рис.1.1, б ) и кручения (рис.1.1, в ) с различным профилем сечения проволоки. Применяются также фасонные (рис.1.1, г ), многожильные (рис.1.1, д ) и составные пружины (рис.1.1, е ) имеющие сложную упругую характеристику применяющиеся при сложных и высоких нагрузках.

В машиностроении наибольшее распространение получили винтовые одножильные пружины, витые из проволоки – цилиндрические, конические и бочкообразные. Цилиндрические пружины имеют линейную характеристику (зависимость сила-деформация), две другие – нелинейную. Цилиндрическая или коническая форма пружин удобна для размещения их в машинах. В упругих пружинах сжатия и растяжения витки подвержены кручению.

Цилиндрические пружины изготавливаются, как правило, методом на­вивки проволоки на оправку. При этом пружины из проволоки диаметром до 8 мм навиваются, как правило, холодным способом, а из проволоки (прутка) большего диаметра – горячим способом, то есть с предварительным подогревом заготовки до температуры пластичности металла. Пружины сжатия навиваются с необходимым шагом между витками. При навивке пружин растяжения проволоке обычно придается дополнительное осевое вращение, обеспечивающее пло­тное прилегание витков друг к другу. При таком способе навивки между витками возникают силы сжатия, достигающие до 30% от максимально допустимого значения для данной пружины. Для соединения с другими деталями используются различные виды прицепов, например в виде изогнутых витков (рис.1.1, а ). Наиболее совершенными являются крепления с помощью ввертываемых резьбовых пробок с крючками.

Пружины сжатия навивают открытой навивкой с просветом между витками на 10…20% больше расчетных осевых упругих перемещений каждого витка при максимальных рабочих нагрузках. Крайние (опорные) витки пружин сжатия (рис. 1.2) обычно поджимаются и сошлифовываются , чтобы получить плоскую, перпендикулярную продольной оси пружины, опорную поверхность, занимающую не менее 75% круговой длины витка. После обрезки в нужный размер, подгибки и подшлифовки концевых витков пружины подвергаются стабилизирующему отжигу. Чтобы избежать потери устойчивости, при отношении высоты пружины в свободном состоянии к диаметру пружины больше трех ее следует ставить на оправки либо монтировать в направляющих стаканах.

Рис.1.2. Цилиндрическая пружина сжатия

Для получения повышенной податливости при небольших габаритах применяют многожильные витые пружины (на рис.1.1, д ) показаны сечения таких пружин). Изготовленные из высокосортной патентированной проволоки они обладают повышенной эластичностью, большой статической прочностью и хорошей амортизационной способностью. Вместе с тем из-за повышенного износа, вызванного трением между проволоками, контактной коррозией и пониженной усталостной прочностью, применять их для переменных нагрузок при большом числе циклов нагружений не рекомендуется. И те, и другие пружины подбираются по ГОСТ 13764 -86… ГОСТ 13776-86.

Составные пружины (рис.1.1, е) используются при больших нагрузках и для ослабления резонансных явлений. Они состоят из нескольких (обычно двух) концентрически расположенных пружин сжатия, воспринимающих нагрузку одновременно. Для устранения закручивания торцевых опор и перекоса пружины должны иметь правое и левое направление навивки. Между ними должен быть достаточный радиальный зазор, а опоры сконструированы так, чтобы отсутствовало боковое сползание пружин.

Для получения нелинейной нагрузочной характеристики используют фасонные (в частности, конические) пружины (рис.1.1, г ), проекции витков которых на опорную плоскость имеют вид спирали (архимедовой или логарифмической).

Витые цилиндрические пружины кручения изготовляют из круглой проволоки аналогично пружинам растяжения и сжатия. Просвет между витками у них несколько больше (во избежание трения при нагружении ). Они имеют специальные зацепы, с помощью которых внешний крутящий момент нагружает пружину, вызывая поворот поперечных сечений витков.

Разработано множество конструкций специальных пружин (рис.2).


Рис.2.Специальные пружины

Наиболее часто используемые – тарельчатые (рис.2, а ), кольцевые (рис.2, б ), спиральные (рис.2, в ), стержневые (рис.2, г ) и листовые рессоры (рис.2, д ), обладающие кроме амортизирующих свойств высокой способностью гасить (демпфировать ) колебания за счёт трения между пластинами. Кстати, такой же способностью обладают и многожильные пружины (рис. 1.1, д ).

При значительных крутящих моментах, сравнительно небольшой податливости и свободе перемещений в осевом направлении применяются торсионные валы (рис.2, г ).

При больших осевых нагрузках и малых перемещениях могут использоваться тарельчатые и кольцевые пружины (рис. 2, а, б ), причем последние благодаря значительному рассеиванию энергии широко используются также в мощных амортизаторах. Тарельчатые пружины применяют при больших нагрузках, малых упругих перемещениях и стесненных габаритах по оси приложения нагрузки.

При ограниченных габаритах по оси и небольших крутящих моментах применяются плоские спиральные пружины (рис.2, в ).

Для стабилизации нагрузочных характеристик и увеличения статической прочности ответственные пружины подвергаются операции заневоливания , т.е. нагружению , при котором в некоторых зонах поперечного сечения возникают пластические деформации, а при разгрузке - остаточные напряжения со знаком, противоположным знаку напряжений, возникающих при рабочих нагрузках.

Широко применяются неметаллические упругие элементы (рис.3), выполненные, как правило, из резины или полимерных материалов.


Рис.3. Типовые резиновые упругие элементы

Такие резиновые упругие элементы применяются в конструкциях упругих муфт, виброизолирующих опор (рис. 4), мягких подвесок агрегатов и ответственных грузов. При этом компенсируются перекосы и несоосности . Для защиты резины от износа и передачи нагрузки в них применяют металлические детали – трубки, пластины и т.п. материал элементов – техническая резина с пределом прочности σ в ≥ 8 МПа, модуль сдвига G = 500…900 МПа. В резине, из-за малого модуля упругости, рассеивается от 30 до 80 процентов энергии колебаний, что примерно в 10 раз больше, чем у стали.

Преимущества резиновых упругих элементов следующие: электро-изолирующая способность; высокая демпфирующая способность (рассеяние энергии в резине достигает 30...80%); способность аккумулировать большее количество энергии на единицу массы, чем пружинная сталь (до 10 раз).

Рис. 4. Упругая опора вала

Пружины и резиновые упругие элементы применяются в конструкциях некоторых ответственных зубчатых колёс, где они сглаживают пульсации передаваемого вращающего момента, заметно увеличивая ресурс изделия (рис.5).


Рис.5. Упругие элементы в зубчатых колёсах

а – пружины сжатия, б – пластинчатые пружины

Здесь упругие элементы встраиваются в конструкцию зубатого колеса.

Для больших нагрузок при необходимости рассеяния энергии вибрации и ударов применяют пакеты упругих элементов (пружин).

Идея состоит в том, что при деформации составных или слоистых пружин (рессор) энергия рассеивается за счёт взаимного трения элементов, как это происходит в слоистых рессорах и многожильных пружинах.

Пластинчатые пакетные рессоры (рис.2.д ) за счёт своего высокого демпфирования успешно применялись с первых шагов транспортного машиностроения ещё в подвеске карет, применялись они и на электровозах, и электропоездах первых выпусков, где были из-за нестабильности сил трения позже заменены витыми пружинами с параллельными демпферами, их можно встретить в некоторых моделях автомобилей и строительно-дорожных машин.

Пружины изготовляют из материалов, обладающих высокой прочностью и стабильными упругими свойствами. Такими качествами после соответствующей термической обработки обладают высокоуглеродистые и легированные (ссодержанием углерода 0,5…1,1%) стали марок 65, 70; марганцовистые стали 65Г, 55ГС; кремнистые стали 60С2, 60С2А, 70СЗА; хромованадиевая сталь 51ХФА и др. Модуль упругости пружинных сталей E = (2,1…2,2)∙ 10 5 МПа, модуль сдвига G = (7,6…8,2)∙ 10 4 МПа.

Для работы в агрессивных средах используются нержавеющие стали или сплавы цветных металлов: бронзы БрОЦ4-1, БрКМц3-1, БрБ-2, монель -металл НМЖМц 28-25-1,5, латуни и др. Модуль упругости сплавов на медной основе E = (1,2…1,3)∙ 10 5 МПа, модуль сдвига G = (4,5…5,0)∙ 10 4 МПа.

Заготовками для изготовления пружин служат проволока, пруток, полосовая сталь, лента.

Механические свойства некоторых материалов, применяемых для изготовления пружин представлены в табл. 1.

Таблица 1. Механические свойства материалов для пружин

Материал

Марка

Предел прочности на растяжение σ в , МПа

Предел прочности на кручение τ , МПа

Относи­тельное удлинение δ , %

Материалы на основе железа

Углеродистые стали

65
70
75
85

1000
1050
1100
1150

800
850
900
1000

9
8
7
6

Рояльная проволока

2000…3000

1200…1800

2…3

Холоднокатаная пружинная проволока (нормальной – Н, повышенной – П и высокой – В прочности)

Н
П
В

1000…1800
1200…2200
1400…2800

600…1000
700…1300
800…1600

Марганцовистые стали

65Г
55ГС

700
650

400
350

8
10

Хромованадиевая сталь

50ХФА

1300

1100

Коррозионно-стойкая сталь

40Х13

1100

Кремнистые стали

55С2
60С2А
70С3А

1300
1300
1800

1200
1200
1600

6
5
5

Хромо-марганцовистые стали

50ХГ
50ХГА

1300

1100
1200

5
6

Никель-кремниевая сталь

60С2Н2А

1800

1600

Хромокремневанадиевая сталь

60С2ХФА

1900

1700

Вольфрамокремниевая сталь

65С2ВА

Медные сплавы

Оловянисто-цинковая бронза
Кремнемарганцовистая бронза

БрО4Ц3
БрК3Мц1

800…900

500…550

1…2

Бериллиевые бронзы

БрБ2
БрБ2,5

800…1000

500…600

3…5

Конструирование и расчет цилиндрических витых пружин растяжения и сжатия

Основное применение в машиностроении имеют пружины из круглой проволоки благодаря их наименьшей стоимости и лучшей их работой при напряжениях кручения.

Пружины характеризуются следующими основными геометрическими параметрами (рис.6):

Диаметр проволоки (прутка) d ;

Средний диаметр навивки пружины D .

Конструктивными параметрами являются:

Индекс пружины, характеризующий кривизну ее витка c = D / d ;

Шаг витков h ;

Угол подъема витков α ,α =arctgh /(π D );

Длина рабочей части пружины Н Р ;

Полное число витков (с учетом концевых подогнутых, опорных витков) n 1 ;

Число рабочих витковn .

Все перечисленные конструктивные параметры – величины безразмерные.

К силовым и упругим параметрам можно отнести:

- жесткость пружины z , жесткость одного витка пружины z 1 (обычно единицей измерения жесткости является Н/мм );

- минимальную рабочую P 1 , максимальную рабочую P 2 и предельную P 3 силы пружины (измеряются в Н );

- величину деформации пружины F под действием приложенной силы;

- величину деформации одного витка f под действием нагрузки.

Рис.6. Основные геометрические параметры витой цилиндрической пружины

Упругие элементы требуют весьма точных расчётов. В частности, их обязательно рассчитывают на жёсткость, поскольку это главная характеристика. При этом неточности расчетов не могут быть компенсированы запасами жесткости. Однако конструкции упругих элементов столь разнообразны, а расчётные методики столь сложны, что привести их в какой-либо обобщённой формуле невозможно.

Чем податливеедолжна быть пружина, тем больше берется индекс пружины и число витков. Обычно индекс пружины выбирают в зависимости от диаметра проволоки в следующих пределах:

d , мм...До 2,5…3-5….6-12

с …… 5 – 12….4-10…4 – 9

Жесткость пружины z равна величине нагрузки, необходимой для деформации всей пружины на единицу длины, а жесткость одного витка пружины z 1 равна величине нагрузки, необходимой для деформации одного витка этой пружины на единицу длины. Присваивая символу F , обозначающему деформацию, необходимый подстрочный индекс, можно записать соответствие между деформацией и силой, её вызвавшей (см. первое из соотношений (1)).

Силовые и упругие характеристики пружины связаны между собой простыми соотношениями:

Цилиндрические винтовые пружины, выполненные из холоднокатаной пружинной проволоки (см. табл. 1), стандартизованы. В стандарте указываются: наружный диаметр пружины D Н , диаметр проволоки d , максимально допустимая сила деформации P 3 , предельная деформация одного витка f 3 , и жесткость одного витка z 1 . Проектный расчет пружин из такой проволоки выполняют методом подбора. Для определения всех параметров пружины в качестве исходных данных необходимо знать: максимальное и минимальное рабочие усилия P 2 и P 1 и одну из трех величин, характеризующих деформацию пружины – величину рабочего хода h , величину ее максимальной рабочей деформации F 2 , или жесткость z , а также размеры свободного пространства для установки пружины.

Обычно принимают P 1 = (0,1…0,5) P 2 и P 3 = (1,1…1,6) P 2 . Далее по величине предельной нагрузки P 3 подбирают пружину с подходящими диаметрами – наружным пружины D Н и проволоки d . Для выбранной пружины, используя соотношения (1) и параметры деформации одного витка, указанные в стандарте, можно определить необходимые жесткость пружины и число рабочих витков:

Полученное расчетом число витков округляют до 0,5 витка при n ≤ 20 и до 1 витка при n > 20 . Поскольку крайние витки пружины сжатия подгибают и сошлифовывают (они не участвуют в деформации пружины), полное число витков обычно увеличивают на 1,5…2 витка, то есть

n 1 = n + (1,5 …2) . (3)

Зная жесткость пружины и нагрузки на ней, можно вычислять все ее геометрические параметры. Длина пружины сжатия в полностью деформированном состоянии (под действием силы P 3 )

H 3 = (n 1 -0,5 )d .(4)

Длина пружины в свободном состоянии

Далее можно определить длину пружины при нагружении ее рабочими силами, предварительного сжатия P 1 и предельной рабочей P 2

При выполнении рабочего чертежа пружины на нем параллельно продольной оси пружины обязательно строится диаграмма (график) ее деформации, на котором отмечаются с допускаемыми отклонениями длины H 1 , H 2 , H 3 и силы P 1 , P 2 , P 3 . На чертеже справочными размерами наносятся: шаг навивки пружины h = f 3 + d и угол подъема витков α = arctg ( h / p D ) .

Винтовые цилиндрические пружины, выполненные из других материалов, не стандартизованы.

Силовые факторы, действующие в лобовом поперечном сечении пружин растяжения и сжатия, сводятся к моменту M = FD /2, вектор которого перпендикулярен оси пружины и силе F , действующей вдоль оси пружины (рис.6). Этот момент М раскладывается на крутящий Т и изгибающий М И моменты:

В большинстве пружин угол подъема витков небольшой, не превышает α < 10…12° . Поэтому проектный расчет можно вести по крутящему моменту, пренебрегая изгибающим моментом из-за его малости.

Как известно, при кручении стержня напряжения в опасном сечении

где T – крутящий момент, а W ρ =π∙ d 3 /16 – полярный момент сопротивления сечения витка пружины, навитой из проволоки диаметром d , [τ ] – допускаемое напряжение кручения (таблица 2). Для учета неравномерности распределения напряжения по сечению витка, обусловленного кривизной его оси, в формулу (7) вводится коэффициент k , зависящий от индекса пружины c = D / d . При обычных углах подъема витка, лежащих в пределах 6…12° коэффициент k с достаточной для расчетов точностью можно вычислить по выражению

Учитывая изложенное , зависимость (7) преобразуется к следующему виду

где Н 3 – длина пружины, сжатой до соприкосновения соседних рабочих витков, H 3 =(n 1 -0,5)d , полное число витков уменьшено на 0,5 из-за шлифовки каждого конца пружины на 0,25d для образования плоского опорного торца.

n 1 – полное число витков, n 1 =n +(1,5…2,0), дополнительные 1,5…2,0 витка идут на поджатие для создания опорных поверхностей пружин.

Осевое упругое сжатие пружин определяют как суммарный угол закручивания пружины θ , умноженный на средний радиус пружины

Максимальная осадка пружины, т. е. перемещение торца пружины до полного соприкосновения витков составляет,

Длина проволоки, необходимой для навивки пружины указывается в технических требованиях ее чертежа.

Отношение длины пружины в свободном состоянии H к ее среднему диаметру D называют индексом гибкости пружины (или просто гибкостью) . Обозначим индекс гибкости γ , тогда по определению γ = H /D . Обычно при γ≤ 2,5 пружина сохраняет устойчивость до полного сжатия витков, если же γ >2,5 возможна потеря устойчивости (возможен изгиб продольной оси пружины и выпучивание ее вбок). Поэтому для длинных пружин применяют либо направляющие стержни, либо направляющие гильзы, удерживающие пружину от выпучивания в сторону.

Характер нагрузки

Допускаемые напряжения кручения [ τ ]

Статическая

0,6 σ В

Отнулевая

(0,45…0,5) σ Конструирование и расчет торсионных валов

Торсионные валы устанавливаются таким образом, чтобы исключить на них воздействие изгибающей нагрузки. Наиболее распространенным является соединение концов торсионного вала с взаимно подвижными в угловом направлении деталями при помощи шлицевого соединения. Поэтому материал торсионного вала работает в чистом виде на кручение, следовательно для него справедливо условие прочности (7). Это означает что наружный диаметр D рабочей части полого торсиона можно подобрать по соотношению

где b = d / D – относительная величина диаметра отверстия, выполненного по оси торсиона.

При известных диаметрах рабочей части торсиона его удельный угол закручивания (угол поворота вокруг продольной оси одного конца вала относительно другого его конца, отнесенный к длине рабочей части торсиона) определится равенством

а предельно допустимый угол закручивания для торсиона в целом будет

Таким образом, при проектном расчете (определении конструктивных размеров) торсиона его диаметр вычисляют исходя из предельного момента (формула 22), а длину - из предельного угла закручивания по выражению (24 ).

Допускаемые напряжения для винтовых пружин сжатия-растяжения и торсионов можно назначать одинаковыми в соответствии с рекомендациями табл. 2.

В данном разделе представлены краткие сведения, касающиеся конструкции и расчета двух, наиболее часто встречающихся, упругих элементов механизмов машин – цилиндрических винтовых пружин и торсионов. Однако номенклатура применяемых в технике упругих элементов достаточно велика. Каждый из них характеризуется своими особенностями. Поэтому для получения более подробных сведений по проектированию и расчету упругих элементов следует обращаться к технической литературе.

Вопросы для самопроверки

По какому признаку в конструкции машины можно найти упругие элементы?

Для каких задачприменяются упругие элементы?

Какая характеристика упругого элемента считается главной?

Из каких материалов следует изготавливать упругие элементы?

Какой вид напряжений испытывает проволока пружин растяжения-сжатия?

Почему материалы для пружин выбирают высокой прочности? Какие эти материалы?

Что означает открытая и закрытая навивка?

В чем состоит расчет витых пружин?

В чем состоит уникальность характеристик тарельчатых пружин?

Упругие элементы применяют в качестве.....

1) силовых элементов

2) амортизаторов

3) двигателей

4) измерительных элементов при замере усилий

5) элементов компактных конструкций

Равномерное напряженное состояние по длине присуще ..... пружинам

1) витым цилиндрическим

2) витым коническим

3) тарельчатым

4) листовым

Для изготовления витых пружин из проволоки диаметром до 8 мм применяю ..... стали.

1) высокоуглеродистые пружинные

2) марганцовистые

3) инструментальные

4) хромомарганцевые

Углеродистые стали, применяемые для изготовления пружин, отличаются......

1) высокой прочностью

2) повышенной упругостью

3) стабильностью свойств

4) повышенной прокаливаемостью

Для изготовления витых пружин с витками диаметром до 15 мм применяют .... стали

1) углеродистые

2) инструментальные

3) хромомарганцевые

4) хромованадиевые

Для изготовления витых пружин с витками диаметром 20...25 мм применяют ....