Возникновение теории вероятности как науки. Теория вероятностей

Как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей . Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс . При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) .

Важный вклад в теорию вероятностей внёс Якоб Бернулли : он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв , А. А. Марков и А. М. Ляпунов . В это время были доказаны закон больших чисел , центральная предельная теорема , а также разработана теория цепей Маркова . Современный вид теория вероятностей получила благодаря аксиоматизации , предложенной Андреем Николаевичем Колмогоровым . В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики .

Основные понятия теории

См. также

Напишите отзыв о статье "Теория вероятностей"

Примечания

Вводные ссылки

  • Вероятностей теория // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.
  • - статья из энциклопедии «Кругосвет»

Литература

А

  • Ахтямов, А. М. «Экономико-математические методы»: учеб. пособие Башк. гос. ун-т. - Уфа: БГУ, 2007.
  • Ахтямов, А. М. «Теория вероятностей». - М.: Физматлит, 2009

Б

  • Боровков, А. А. «Математическая статистика» , М.: Наука, 1984.
  • Боровков, А. А. «Теория вероятностей» , М.: Наука, 1986.
  • Булдык, Г. М. , Мн., Высш. шк., 1989.
  • Булинский, А. В., Ширяев, А. Н. «Теория случайных процессов» , М.: Физматлит, 2003.
  • Бекарева, Н. Д. «Теория вероятностей. Конспект лекций» , Новосибирск НГТУ
  • Баврин, И. И. « Высшая математика» (Часть 2 «Элементы теории вероятностей и математической статистики»), М.: Наука, 2000.

В

  • Вентцель Е. С. Теория вероятностей. - М.: Наука, 1969. - 576 с.
  • Вентцель Е. С. Теория вероятностей. - 10-е изд., стер.. - М .: «Академия» , 2005. - 576 с. - ISBN 5-7695-2311-5 .

Г

  • Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. - М.: Наука, 1977.
  • Гмурман, В. Е. «Теория вероятностей и математическая статистика» : Учеб. пособие - 12-е изд., перераб.- М.: Высшее образование, 2006.-479 с.:ил (Основы наук).
  • Гмурман, В. Е. «Руководство к решению задач по теории вероятностей и математической статистике» : Учеб. пособие - 11-е изд., перераб. - М.: Высшее образование, 2006.-404 с. (Основы наук).
  • Гнеденко, Б. В. «Курс теории вероятностей» , - М.: Наука, 1988.
  • Гнеденко, Б. В. «Курс теории вероятностей» , УРСС. М.: 2001.
  • Гнеденко Б. В., Хинчин А. Я. , 1970.
  • Гурский Е. И. «Сборник задач по теории вероятностей и математической статистике» , - Минск: Высшая школа, 1975.

Д

  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.

Е

  • А. В. Ефимов, А. Е. Поспелов и др. 4 часть // Сборник задач по математике для втузов. - 3-е изд., перераб. и дополн.. - М .: «Физматлит », 2003. - Т. 4. - 432 с. - ISBN 5-94052-037-5 .

К

  • Колемаев, В. А. и др. «Теория вероятностей и математическая статистика» , - М.: Высшая школа, 1991.
  • Колмогоров, А. Н. «Основные понятия теории вероятностей» , М.: Наука, 1974.
  • Коршунов, Д. А., Фосс, С. Г. «Сборник задач и упражнений по теории вероятностей» , Новосибирск, 1997.
  • Коршунов, Д. А., Чернова, Н. И. «Сборник задач и упражнений по математической статистике» , Новосибирск. 2001.
  • Кремер Н. Ш. Теория вероятностей и математическая статистика: Учебник для ВУЗов. - 2- изд., перераб. и доп.-М:ЮНИТИ-ДАНА, 2004. - 573 с.
  • Кузнецов, А. В. «Применение критериев согласия при математическом моделировании экономических процессов» , Мн.: БГИНХ, 1991.

Л

  • Лихолетов И. И., Мацкевич И. Е. «Руководство к решению задач по высшей математике, теории вероятностей и математической статистике» , Мн.: Выш. шк., 1976.
  • Лихолетов И. И. «Высшая математика, теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1976.
  • Лоэв М.В «Теория вероятностей» , - М.: Издательство иностранной литературы, 1962.

М

  • Маньковский Б. Ю., «Таблица вероятности».
  • Мацкевич И. П., Свирид Г. П. «Высшая математика. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1993.
  • Мацкевич И. П., Свирид Г. П., Булдык Г. М. «Сборник задач и упражнений по высшей математике. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1996.
  • Мейер П.-А. Вероятность и потенциалы. Издательство Мир, Москва, 1973.
  • Млодинов Л.

П

  • Прохоров, А. В., В. Г. Ушаков, Н. Г. Ушаков. «Задачи по теории вероятностей» , Наука. М.: 1986.
  • Прохоров Ю. В., Розанов Ю. А. «Теория вероятностей» , - М.: Наука, 1967.
  • Пугачев, В. С. «Теория вероятностей и математическая статистика» , Наука. М.: 1979.

Р

  • Ротарь В. И., «Теория вероятностей» , - М.: Высшая школа, 1992.

С

  • Свешников А. А. и др., «Сборник задач по теории вероятностей, математической статистике и теории случайных функций» , - М.: Наука, 1970.
  • Свирид, Г. П., Макаренко, Я. С., Шевченко, Л. И. «Решение задач математической статистики на ПЭВМ» , Мн., Выш. шк., 1996.
  • Севастьянов Б. А., «Курс теории вероятностей и математической статистики» , - М.: Наука, 1982.
  • Севастьянов, Б. А., Чистяков, В. П., Зубков, А. М. «Сборник задач по теории вероятностей» , М.: Наука, 1986.
  • Соколенко А. И., «Высшая математика» , учебник. М.: Академия, 2002.

Ф

  • Феллер, В. «Введение в теорию вероятностей и её приложения» .

Х

  • Хамитов, Г. П., Ведерникова, Т. И. «Вероятности и статистики» , БГУЭП. Иркутск.: 2006.

Ч

  • Чистяков, В. П. «Курс теории вероятностей» , М., 1982.
  • Чернова, Н. И. «Теория вероятностей», Новосибирск. 2007.

Ш

  • Шейнин О. Б. Берлин: NG Ferlag, 2005, 329 с.
  • Ширяев, А. Н. «Вероятность» , Наука. М.: 1989.
  • Ширяев, А. Н. «Основы стохастической финансовой математики В 2-х т.» , ФАЗИС. М.: 1998.

Отрывок, характеризующий Теория вероятностей

– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…
– Какой же обман? – удивленно спросила княжна
– Да уж я знаю, только послушайте меня, ради бога. Вот и няню хоть спросите. Говорят, не согласны уезжать по вашему приказанию.
– Ты что нибудь не то говоришь. Да я никогда не приказывала уезжать… – сказала княжна Марья. – Позови Дронушку.
Пришедший Дрон подтвердил слова Дуняши: мужики пришли по приказанию княжны.
– Да я никогда не звала их, – сказала княжна. – Ты, верно, не так передал им. Я только сказала, чтобы ты им отдал хлеб.
Дрон, не отвечая, вздохнул.
– Если прикажете, они уйдут, – сказал он.
– Нет, нет, я пойду к ним, – сказала княжна Марья
Несмотря на отговариванье Дуняши и няни, княжна Марья вышла на крыльцо. Дрон, Дуняша, няня и Михаил Иваныч шли за нею. «Они, вероятно, думают, что я предлагаю им хлеб с тем, чтобы они остались на своих местах, и сама уеду, бросив их на произвол французов, – думала княжна Марья. – Я им буду обещать месячину в подмосковной, квартиры; я уверена, что Andre еще больше бы сделав на моем месте», – думала она, подходя в сумерках к толпе, стоявшей на выгоне у амбара.
Толпа, скучиваясь, зашевелилась, и быстро снялись шляпы. Княжна Марья, опустив глаза и путаясь ногами в платье, близко подошла к ним. Столько разнообразных старых и молодых глаз было устремлено на нее и столько было разных лиц, что княжна Марья не видала ни одного лица и, чувствуя необходимость говорить вдруг со всеми, не знала, как быть. Но опять сознание того, что она – представительница отца и брата, придало ей силы, и она смело начала свою речь.
– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.

Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.
«Он и тогда хотел сказать мне то, что он сказал мне в день своей смерти, – думала она. – Он всегда думал то, что он сказал мне». И вот ей со всеми подробностями вспомнилась та ночь в Лысых Горах накануне сделавшегося с ним удара, когда княжна Марья, предчувствуя беду, против его воли осталась с ним. Она не спала и ночью на цыпочках сошла вниз и, подойдя к двери в цветочную, в которой в эту ночь ночевал ее отец, прислушалась к его голосу. Он измученным, усталым голосом говорил что то с Тихоном. Ему, видно, хотелось поговорить. «И отчего он не позвал меня? Отчего он не позволил быть мне тут на месте Тихона? – думала тогда и теперь княжна Марья. – Уж он не выскажет никогда никому теперь всего того, что было в его душе. Уж никогда не вернется для него и для меня эта минута, когда бы он говорил все, что ему хотелось высказать, а я, а не Тихон, слушала бы и понимала его. Отчего я не вошла тогда в комнату? – думала она. – Может быть, он тогда же бы сказал мне то, что он сказал в день смерти. Он и тогда в разговоре с Тихоном два раза спросил про меня. Ему хотелось меня видеть, а я стояла тут, за дверью. Ему было грустно, тяжело говорить с Тихоном, который не понимал его. Помню, как он заговорил с ним про Лизу, как живую, – он забыл, что она умерла, и Тихон напомнил ему, что ее уже нет, и он закричал: „Дурак“. Ему тяжело было. Я слышала из за двери, как он, кряхтя, лег на кровать и громко прокричал: „Бог мой!Отчего я не взошла тогда? Что ж бы он сделал мне? Что бы я потеряла? А может быть, тогда же он утешился бы, он сказал бы мне это слово“. И княжна Марья вслух произнесла то ласковое слово, которое он сказал ей в день смерти. «Ду ше нь ка! – повторила княжна Марья это слово и зарыдала облегчающими душу слезами. Она видела теперь перед собою его лицо. И не то лицо, которое она знала с тех пор, как себя помнила, и которое она всегда видела издалека; а то лицо – робкое и слабое, которое она в последний день, пригибаясь к его рту, чтобы слышать то, что он говорил, в первый раз рассмотрела вблизи со всеми его морщинами и подробностями.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Некоторые программисты после работы в области разработки обычных коммерческих приложений задумываются о том, чтобы освоить машинное обучение и стать аналитиком данных. Часто они не понимают, почему те или иные методы работают, и большинство методов машинного обучения кажутся магией. На самом деле, машинное обучение базируется на математической статистике, а та, в свою очередь, основана на теории вероятностей. Поэтому в этой статье мы уделим внимание базовым понятиям теории вероятностей: затронем определения вероятности, распределения и разберем несколько простых примеров.

Возможно, вам известно, что теория вероятностей условно делится на 2 части. Дискретная теория вероятностей изучает явления, которые можно описать распределением с конечным (или счетным) количеством возможных вариантов поведения (бросания игральных костей, монеток). Непрерывная теория вероятностей изучает явления, распределенные на каком-то плотном множестве, например на отрезке или в круге.

Можно рассмотреть предмет теории вероятностей на простом примере. Представьте себя разработчиком шутера. Неотъемлемой частью разработки игр этого жанра является механика стрельбы. Ясно, что шутер в котором всё оружие стреляет абсолютно точно, будет малоинтересен игрокам. Поэтому, обязательно нужно добавлять оружию разброс. Но простая рандомизация точек попадания оружия не позволит сделать его тонкую настройку, поэтому, корректировка игрового баланса будет сложна. В то же время, используя случайные величины и их распределения можно проанализировать то, как будет работать оружие с заданным разбросом, и поможет внести необходимые корректировки.

Пространство элементарных исходов

Допустим, из некоторого случайного эксперимента, который мы можем многократно повторять (например, бросание монеты), мы можем извлечь некоторую формализуемую информацию (выпал орел или решка). Эта информация называется элементарным исходом, при этом целесообразно рассматривать множество всех элементарных исходов, часто обозначаемое буквой Ω (Омега).

Структура этого пространства целиком зависит от природы эксперимента. Например, если рассматривать стрельбу по достаточно большой круговой мишени, - пространством элементарных исходов будет круг, для удобства размещенный с центром в нуле, а исходом - точка в этом круге.

Кроме того, рассматривают множества элементарных исходов - события (например, попадание в «десятку» - это концентрический круг маленького радиуса с мишенью). В дискретном случае всё достаточно просто: мы можем получить любое событие, включая или исключая элементарные исходы за конечное время. В непрерывном же случае всё гораздо сложнее: нам понадобится некоторое достаточно хорошее семейство множеств для рассмотрения, называемое алгеброй по аналогии с простыми вещественными числами, которые можно складывать, вычитать, делить и умножать. Множества в алгебре можно пересекать и объединять, при этом результат операции будет находиться в алгебре. Это очень важное свойство для математики, которая лежит за всеми этими понятиями. Минимальное семейство состоит всего из двух множеств - из пустого множества и пространства элементарных исходов.

Мера и вероятность

Вероятность - это способ делать выводы о поведении очень сложных объектов, не вникая в принцип их работы. Таким образом, вероятность определяется как функция от события (из того самого хорошего семейства множеств), которая возвращает число - некоторую характеристику того, насколько часто может происходить такое событие в реальности. Для определённости математики условились, что это число должно лежать между нулем и единицей. Кроме того, к этой функции предъявляются требования: вероятность невозможного события нулевая, вероятность всего множества исходов единичная, и вероятность объединения двух независимых событий (непересекающихся множеств) равна сумме вероятностей. Другое название вероятности - вероятностная мера. Чаще всего используется Лебегова мера , обобщающая понятия длина, площадь, объём на любые размерности (n -мерный объем), и таким образом она применима для широкого класса множеств.

Вместе совокупность множества элементарных исходов, семейства множеств и вероятностной меры называется вероятностным пространством . Рассмотрим, каким образом можно построить вероятностное пространство для примера со стрельбой в мишень.

Рассмотрим стрельбу в большую круглую мишень радиуса R , в которую невозможно промахнуться. Множеством элементарных событий положим круг с центром в начале координат радиуса R . Поскольку мы собираемся использовать площадь (меру Лебега для двумерных множеств) для описания вероятности события, то будем использовать семейство измеримых (для которых эта мера существует) множеств.

Примечание На самом деле, это технический момент и в простых задачах процесс определения меры и семейства множеств не играет особой роли. Но понимать, что эти два объекта существуют, необходимо, ведь во многих книгах по теории вероятности теоремы начинаются со слов: «Пусть (Ω,Σ,P) - вероятностное пространство … ».

Как уже сказано выше, вероятность всего пространства элементарных исходов должна равняться единице. Площадь (двумерная мера Лебега, которую мы обозначим λ 2 (A) , где А — событие) круга по хорошо известной со школы формуле равна π *R 2 . Тогда мы можем ввести вероятность P(A) = λ 2 (A) / (π *R 2) , и эта величина уже будет лежать между 0 и 1 для любого события А.

Если предположить, что попадание в любую точку мишени равновероятно, поиск вероятности попадания стрелком в какую-то то область мишени сводится к поиску площади этого множества (отсюда можно сделать вывод, что вероятность попадания в конкретную точку нулевая, ведь площадь точки равна нулю).

Например, мы хотим узнать, какова вероятность того, что стрелок попадёт в «десятку» (событие A — стрелок попал в нужное множество). В нашей модели, «десятка» представляется кругом с центром в нуле и радиусом r. Тогда вероятность попадания в этот круг P(A) = λ 2 /(A)π *R 2 = π * r 2 /(π R 2)= (r/R) 2 .

Это одна из самых простых разновидностей задач на «геометрическую вероятность», - большинство таких задач требуют поиска площади.

Случайные величины

Случайная величина — функция, переводящая элементарные исходы в вещественные числа. К примеру, в рассмотренной задаче мы можем ввести случайную величину ρ(ω) — расстояние от точки попадания до центра мишени. Простота нашей модели позволяет явно задать пространство элементарных исходов: Ω = {ω = (x,y) такие числа, что x 2 +y 2 ≤ R 2 } . Тогда случайная величина ρ(ω) = ρ(x,y) = x 2 +y 2 .

Средства абстракции от вероятностного пространства. Функция распределения и плотность

Хорошо, когда структура пространства хорошо известна, но на самом деле так бывает далеко не всегда. Даже если структура пространства известна, она может быть сложна. Для описания случайных величин, если их выражение неизвестно, существует понятие функции распределения, которую обозначают F ξ (x) = P(ξ < x) (нижний индекс ξ здесь означает случайную величину). Т.е. это вероятность множества всех таких элементарных исходов, для которых значение случайной величины ξ на этом событии меньше, чем заданный параметр x .

Функция распределения обладает несколькими свойствами:

  1. Во-первых, она находится между 0 и 1 .
  2. Во-вторых, она не убывает, когда ее аргумент x растёт.
  3. В третьих, когда число -x очень велико, функция распределения близка к 0 , а когда само х большое, функция распределения близка к 1 .

Вероятно, смысл этой конструкции при первом чтении не слишком понятен. Одно из полезных свойств — функция распределения позволяет искать вероятность того, что величина принимает значение из интервала. Итак, P (случайная величина ξ принимает значения из интервала ) = F ξ (b)-F ξ (a) . Исходя из этого равенства, можем исследовать, как изменяется эта величина, если границы a и b интервала близки.

Пусть d = b-a , тогда b = a+d . А следовательно, F ξ (b)-F ξ (a) = F ξ (a+d) - F ξ (a) . При малых значениях d , указанная выше разность так же мала (если распределение непрерывное). Имеет смысл рассматривать отношение p ξ (a,d)= (F ξ (a+d) - F ξ (a))/d . Если при достаточно малых значениях d это отношение мало отличается от некоторой константы p ξ (a) , не зависящей от d, то в этой точке случайная величина имеет плотность, равную p ξ (a) .

Примечание Читатели, которые ранее сталкивались понятием производной, могут заметить что p ξ (a) — производная функции F ξ (x) в точке a . Во всяком случае, можно изучить понятие производной в посвященной этой теме статье на сайте Mathprofi.

Теперь смысл функции распределения можно определить так: её производная (плотность p ξ , которую мы определили выше) в точке а описывает, насколько часто случайная величина будет попадать в небольшой интервал с центром в точке а (окрестность точки а) по сравнению с окрестностями других точек. Другими словами, чем быстрее растёт функция распределения, тем более вероятно появление такого значения при случайном эксперименте.

Вернемся к примеру. Мы можем вычислить функцию распределения для случайной величины, ρ(ω) = ρ(x,y) = x 2 +y 2 , которая обозначает расстояние от центра до точки случайного попадания в мишень. По определению F ρ (t) = P(ρ(x,y) < t) . т.е. множество {ρ(x,y) < t)} — состоит из таких точек (x,y) , расстояние от которых до нуля меньше, чем t . Мы уже считали вероятность такого события, когда вычисляли вероятность попадания в «десятку» - она равна t 2 /R 2 . Таким образом, Fρ(t) = P(ρ(x,y) < t) = t 2 /R 2 , для 0

Мы можем найти плотность p ρ этой случайной величины. Сразу заметим, что вне интервала она нулевая, т.к. функция распределения на этом промежутке неизменна. На концах этого интервала плотность не определена. Внутри интервала её можно найти, используя таблицу производных (например из на сайте Mathprofi) и элементарные правила дифференцирования. Производная от t 2 /R 2 равна 2t/R 2 . Значит, плотность мы нашли на всей оси вещественных чисел.

Ещё одно полезное свойство плотности — вероятность того, что функция принимает значение из промежутка, вычисляется при помощи интеграла от плотности по этому промежутку (ознакомиться с тем, что это такое, можно в статьях о собственном , несобственном , неопределенном интегралах на сайте Mathprofi).

При первом чтении, интеграл по промежутку от функции f(x) можно представлять себе как площадь криволинейной трапеции. Ее сторонами являются фрагмент оси Ох, промежуток (горизонтальной оси координат), вертикальные отрезки, соединяющие точки (a,f(a)), (b,f(b)) на кривой с точками (a,0), (b,0) на оси Ох. Последней стороной является фрагмент графика функции f от (a,f(a)) до (b,f(b)) . Можно говорить об интеграле по промежутку (-∞; b] , когда для достаточно больших отрицательных значений, a значение интеграла по промежутку будет меняться пренебрежимо мало по сравнению с изменением числа a. Аналогичным образом определяется и интеграл по промежуткам }