Приведенный квадратный трехчлен. Корни квадратного уравнения

Квадратным трёхчленом называется многочлен вида ax^2 + bx + с, где x - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Чтобы разложить трехчлен на множители, нужно знать корни этого трехчлена. (далее пример на трехчлене 5х^2 + 3х- 2)

Заметим: значение квадратного трёхчлена 5х^2 + 3х - 2 зависит от значения х. Например: Если х = 0, то 5х^2 + 3х - 2 = -2

Если х = 2, то 5х^2 + 3х - 2 = 24

Если х = -1, то 5х^2 + 3х - 2 = 0

При х = -1 квадратный трёхчлен 5х^2 + 3х - 2 обращается в нуль, в этом случае число -1 называют корнем квадратного трёхчлена .

Как получить корень уравнения

Поясним, как мы получили корень этого уравнения. Для начала необходимо четко знать теорему и формулу, по которой мы будем работать:

“Если х1 и х2 – корни квадратного трехчлена ax^2 + bx + c, то ax^2 + bx + c = a(x - x1)(x - x2)”.

Х = (-b±√(b^2-4ac))/2a \

Это формула нахождения корней многочлена является самой примитивной формулой, решая по которой вы никогда не запутаетесь.

Выражение 5х^2 + 3х – 2.

1. Приравниваем к нулю: 5х^2 + 3х – 2 = 0

2. Находим корни квадратного уравнения, для этого подставляем значения в формулу (а – коэффициент при Х^2, b – коэффициент при Х, свободный член, то есть цифра без Х):

Первый корень находим со знаком плюс перед корнем квадратным:

Х1 = (-3 + √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 + √(9 -(-40)))/10 = (-3 + √(9+40))/10 = (-3 + √49)/10 = (-3 +7)/10 = 4/(10) = 0,4

Второй корень со знаком минус перед корнем квадратным:

X2 = (-3 - √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 - √(9- (-40)))/10 = (-3 - √(9+40))/10 = (-3 - √49)/10 = (-3 - 7)/10 = (-10)/(10) = -1

Вот мы и нашли корни квадратного трехчлена. Чтобы убедиться, что они верные, можно сделать проверку: сначала подставляем первый корень в уравнение, затем второй:

1) 5х^2 + 3x – 2 = 0

5 * 0,4^2 + 3*0,4 – 2 = 0

5 * 0,16 + 1,2 – 2 = 0

2) 5х^2 + 3x – 2 = 0

5 * (-1)^2 + 3 * (-1) – 2 = 0

5 * 1 + (-3) – 2 = 0

5 – 3 – 2 = 0

Если при подстановке всех корней уравнение обращается в ноль, значит уравнение решено верно.

3. Теперь воспользуемся формулой из теоремы: ax^2 + bx + c = a(x-x1)(x-x2), помним, что Х1 и Х2 – это корни квадратного уравнения. Итак: 5х^2 + 3x – 2 = 5 * (x - 0,4) * (x- (-1))

5х^2 + 3x– 2 = 5(x - 0,4)(x + 1)

4. Чтобы убедиться в правильности разложения можно просто перемножить скобки:

5(х - 0,4)(х + 1) = 5(х^2 + x - 0,4x - 0,4) = 5(x^2 + 0,6x – 0,4) = 5x^2 +3 – 2. Что подтверждает правильность решения.

Второй вариант нахождения корней квадратного трехчлена

Еще один вариант нахождения корней квадратного трехчлена - теорема обратная теореме Виетта. Здесь корни квадратного уравнения находятся по формулам: x1 + x2 = -(b) , х1 * х2 = с . Но важно понимать, что данной теоремой можно пользоваться только в том случае, если коэффициент а = 1, то есть число, стоящее перед х^2 = 1.

Например: x^2 – 2x +1 = 0, a = 1, b = - 2, c = 1.

Решаем: х1 + х2 = - (-2), х1 + х2 = 2

Теперь важно подумать, какие числа в произведении дают единицу? Естественно это 1 * 1 и -1 * (-1) . Из этих чисел выбираем те, которые соответствую выражению х1 + х2 = 2, конечно же - это 1 + 1. Вот мы и нашли корни уравнения: х1 = 1, х2 = 1. Это легко проверить, если подставить в выражение x^2 – 2x + 1 = 0.

Разложение квадратных трехчленов на множители относится к школьным заданиям, с которыми рано или поздно сталкивается каждый. Как его выполнить? Какова формула разложения квадратного трехчлена на множители? Разберемся пошагово с помощью примеров.

Общая формула

Разложение квадратных трехчленов на множители осуществляется решением квадратного уравнения. Это несложная задача, которую можно решить несколькими методами - нахождением дискриминанта, при помощи теоремы Виета, существует и графический способ решения. Первые два способа изучаются в средней школе.

Общая формула выглядит так: lx 2 +kx+n=l(x-x 1)(x-x 2) (1)

Алгоритм выполнения задания

Для того чтобы выполнить разложение квадратных трехчленов на множители, нужно знать теорему Вита, иметь под рукой программу для решения, уметь находить решение графически или искать корни уравнения второй степени через формулу дискриминанта. Если дан квадратный трехчлен и его надо разложить на множители, алгоритм действий такой:

1) Приравнять исходное выражение к нулю, чтобы получить уравнение.

2) Привести подобные слагаемые (если есть такая необходимость).

3) Найти корни любым известным способом. Графический метод лучше применять в случае, если заранее известно, что корни - целые и небольшие числа. Нужно помнить, что количество корней равно максимальной степени уравнения, то есть у квадратного уравнения корней два.

4) Подставить значение х в выражение (1).

5) Записать разложение квадратных трехчленов на множители.

Примеры

Окончательно понять, как выполняется это задание, позволяет практика. Иллюстрируют разложение на множители квадратного трехчлена примеры:

необходимо разложить выражение:

Прибегнем к нашему алгоритму:

1) х 2 -17х+32=0

2) подобные слагаемые сведены

3) по формуле Виета найти корни для этого примера сложно, потому лучше воспользоваться выражением для дискриминанта:

D=289-128=161=(12,69) 2

4) Подставим найденные нами корни в основную формулу для разложения:

(х-2,155) * (х-14,845)

5) Тогда ответ будет таким:

х 2 -17х+32=(х-2,155)(х-14,845)

Проверим, соответствуют ли найденные дискриминантом решения формулам Виета:

14,845 . 2,155=32

Для данных корней применяется теорема Виета, они были найдены правильно, а значит полученное нами разложение на множители тоже правильно.

Аналогично разложим 12х 2 +7х-6.

x 1 =-7+(337) 1/2

x 2 =-7-(337) 1/2

В предыдущем случае решения были нецелыми, но действительными числами, найти которые легко, имея перед собой калькулятор. Теперь рассмотрим более сложный пример, в котором корни будут комплексными: разложить на множители х 2 +4х+9. По формуле Виета корни найти не получится, и дискриминант отрицательный. Корни будут на комплексной плоскости.

D=-20

Исходя из этого, получаем нтересующие нас корни -4+2i*5 1/2 и -4-2i * 5 1/2 , поскольку (-20) 1/2 =2i*5 1/2 .

Получаем искомое разложение, подставив корни в общую формулу.

Еще один пример: нужно разложить на множители выражение 23х 2 -14х+7.

Имеем уравнение 23х 2 -14х+7 =0

D=-448

Значит, корни 14+21,166i и 14-21,166i. Ответ будет такой:

23х 2 -14х+7 =23(х-14-21,166i )*(х-14+21,166i ).

Приведем пример, решить который можно без помощи дискриминанта.

Пусть нужно разложить квадратное уравнение х 2 -32х+255. Очевидно, его можно решить и дискриминантом, однако быстрее в данном случае подобрать корни.

x 1 =15

x 2 =17

Значит х 2 -32х+255 =(х-15)(х-17).

Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.

Далее считаем, что - действительные числа.
Рассмотрим дискриминант квадратного уравнения :
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь - мнимая единица, ;
и - действительная и мнимая части корней:
; .
Тогда

.

Графическая интерпретация

Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках.
При , график касается оси абсцисс в одной точке.
При , график не пересекает ось абсцисс.

Ниже приводятся примеры таких графиков.

Полезные формулы, связанные с квадратным уравнением

(f.1) ;
(f.2) ;
(f.3) .

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):




,
где
; .

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

выполняется при
и .
То есть и являются корнями квадратного уравнения
.

Примеры определения корней квадратного уравнения

Пример 1


(1.1) .

Решение


.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.

Отсюда получаем разложение квадратного трехчлена на множители:

.

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).

Ответ

;
;
.

Пример 2

Найти корни квадратного уравнения:
(2.1) .

Решение

Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.

Тогда разложение трехчлена на множители имеет вид:
.

График функции y = x 2 - 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

Ответ

;
.

Пример 3

Найти корни квадратного уравнения:
(3.1) .

Решение

Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.

Можно найти комплексные корни:
;
;

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Ответ

Действительных корней нет. Корни комплексные:
;
;
.

При решении арифметических и алгебраических задач иногда требуется возвести дробь в квадрат . Проще всего это сделать, когда дробь десятичная – достаточно обычного калькулятора. Однако если дробь обыкновенная или смешанная, то при возведении такого числа в квадрат могут возникнуть некоторые затруднения.

Вам понадобится

  • калькулятор, компьютер, приложение Excel.

Инструкция

Чтобы возвести десятичную дробь в квадрат , возьмите инженерный , наберите на нем возводимую в квадрат дробь и нажмите на клавишу возведения во вторую степень. На большинстве калькуляторов эта кнопка обозначена как «х²». На стандартном калькуляторе Windows функция возведения в квадрат выглядит как «x^2». Например, квадрат десятичной дроби 3,14 будет равен: 3,14² = 9,8596.

Чтобы возвести в квадрат десятичную дробь на обычном (бухгалтерском) калькуляторе, умножьте это число само на себя. Кстати, в некоторых моделях калькуляторов предусмотрена возможность возведения числа в квадрат даже при отсутствии специальной кнопки. Поэтому предварительно ознакомьтесь с инструкцией к конкретному калькулятору. Иногда «хитрого» возведения в степень приведены на задней крышке или на калькулятора. Например, на многих калькуляторах для возведения числа в квадрат достаточно нажать кнопки «х» и «=».

Для возведения в квадрат обыкновенной дроби (состоящей из числителя и знаменателя), возведите в квадрат по отдельности числитель и знаменатель этой дроби. То есть воспользуйтесь следующим правилом:(ч / з)² = ч² / з², где ч – числитель дроби, з – знаменатель дроби.Пример: (3/4)² = 3²/4² = 9/16.

Если возводимая в квадрат дробь – смешанная (состоит из целой части и обыкновенной дроби), то предварительно приведите ее к обыкновенному виду. То есть примените следующую формулу:(ц ч/з)² = ((ц*з+ч) / з)² = (ц*з+ч)² / з², где ц – целая часть смешанной дроби.Пример: (3 2/5)² = ((3*5+2) / 5)² = (3*5+2)² / 5² = 17² / 5² = 289/25 = 11 14/25.

Если в квадрат (не ) дроби приходится постоянно, то воспользуйтесь программой MS Excel. Для этого введите в одну из таблицы следующую формулу: =СТЕПЕНЬ(A2;2) где А2 – адрес ячейки, в которую будет вводиться возводимая в квадрат дробь .Чтобы сообщить программе, что с вводимым числом необходимо обращаться как дробь ю (т.е. не преобразовывать ее в десятичный вид), наберите перед дробь ю цифру «0» и знак «пробел». То есть для ввода, например, дроби 2/3 нужно ввести: «0 2/3» (и нажать Enter). При этом в строке ввода отобразится десятичное представление введенной дроби. Значение и представление дроби непосредственно в сохранится в исходном виде. Кроме того, при использовании математических функций, аргументами которых обыкновенные дроби, результат также будет представлен в виде обыкновенной дроби. Следовательно квадрат дроби 2/3 будет представлен как 4/9.

Квадратный трехчлен ax 2 +bx+c можно разложить на линейные множители по формуле:

ax 2 +bx+c=a (x-x 1)(x-x 2) , где x 1, x 2 — корни квадратного уравнения ax 2 +bx+c=0.

Разложить квадратный трехчлен на линейные множители:

Пример 1). 2x 2 -7x-15.

Решение. 2x 2 -7x-15=0.

a =2; b =-7; c =-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D .

D=b 2 -4ac=(-7) 2 -4∙2∙(-15)=49+120=169=13 2 >0; 2 действительных корня.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

2x 2 -7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x 2 -7x-15 2х+3 и х-5.

Ответ: 2x 2 -7x-15=(2х+3)(х-5).

Пример 2). 3x 2 +2x-8 .

Решение. Найдем корни квадратного уравнения:

a =3; b =2; c =-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b =2). Находим дискриминант D 1 .

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 3x 2 +2x-8 в виде произведения двучленов х+2 и 3х-4 .

Ответ: 3x 2 +2x-8=(х+2) (3х-4) .

Пример 3) . 5x 2 -3x-2.

Решение. Найдем корни квадратного уравнения:

a =5; b =-3; c =-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

5x 2 -3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x 2 -3x-2 в виде произведения двучленов х-1 и 5х+2.

Ответ: 5x 2 -3x-2=(х-1) (5х+2).

Пример 4). 6x 2 +x-5.

Решение. Найдем корни квадратного уравнения:

a =6; b =1; c =-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 6x 2 +x-5 в виде произведения двучленов х+1 и 6х-5 .

Ответ: 6x 2 +x-5=(х+1) (6х-5) .

Пример 5). x 2 -13x+12.

Решение. Найдем корни приведенного квадратного уравнения:

x 2 -13x+12=0. Проверим, можно ли применить . Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.

a =1; b =-13; c =12. Находим дискриминант D.

D=b 2 -4ac =13 2 -4∙1∙12=169-48=121=11 2 .

Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:

x 1 +x 2 =13; x 1 ∙x 2 =12. Очевидно, что x 1 =1; x 2 =12.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

x 2 -13x+12=(х-1)(х-12).

Ответ: x 2 -13x+12=(х-1) (х-12) .

Пример 6). x 2 -4x-6.

Решение. Найдем корни приведенного квадратного уравнения:

a =1; b =-4; c =-6. Второй коэффициент — четное число. Находим дискриминант D 1 .

Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2) и запишем ответ.