Жестяные работы отбортовка отверстия в листе. Отбортовка отверстий. Схема для расчета отбортовки изделия. Усилие для отбортовки цилиндрическим пуансоном. Формовка

ЛЕКЦИЯ № 16

Формоизменяющие операции листовой штамповки. Формовка и отбортовка

План лекции

1. Формовка.

1.1. Определение допустимых степеней деформации при формовке.

1.2. Технологические расчеты при формовке.

2. Отбортовка.

2.1. Отбортовка отверстий.

2.2. Геометрические параметры инструмента для отбортовки.

1. Формовка

Рельефная формовка представляет собой изменение формы заготовки, заключающейся в образовании местных углублений и выпуклостей за счет растяжения материала.

Кроме местных углублений и выпукло – вогнутых рельефов формовкой получают рисунки и ребра жесткости. Рационально выполненные ребра жесткости позволяют существенно повысить жесткость плоских и неглубоких штампованных деталей, появляется возможность уменьшения толщины заготовки и ее массы. Применение формовки замен вытяжки при изготовлении неглубоких деталей с фланцем позволяет получить экономию металла вследствие уменьшения поперечных размеров заготовки. Повышение прочности, полученной в результате деформационного упрочнения, превосходит уменьшение прочности вследствие утонения заготовки в зоне деформации.

Форма пуансона существенно влияет на место расположение очага деформации. При деформировании полусферическим пуансоном зона пластической деформации состоит из двух участков: контактирующего с пуансоном и свободного участка, на котором отсутствуют внешние нагрузки.

Рисунок 1 – Формовка ребра жесткости и полусферических углублений

При формовке полусферических углублений возможно появление трещин на некотором удалении от полюса полусферы. Это объясняется тем, что в полюсе и его окрестности заготовка плотно прилегает к пуансону и контактные силы трения, возникающие при скольжении заготовки (при ее утонении) относительно пуансона, сдерживают деформацию в полюсе более интенсивно, чем на периферийных участках.

Формовкой цилиндрическим пуансоном с плоским торцом можно получить углубления высотой (0.2 – 0.3) диаметра пуансона. Для получения более глубоких полостей применяют формовку с предварительным набором металла в виде кольцевого выступа (рифта), а при штамповке деталей их алюминиевых сплавов – дифференцированный нагрев фланца.

Рисунок 2 – Формовка цилиндрическим пуансоном с плоским торцом и формовка с предварительным набором

Заготовка при формовке частично обтягивается по пуансону, а частично по матрице, поэтому глубина матрицы должна быть больше высоты ребра или углубления, а радиус углового участка пуансона существенно меньше радиуса скругления кромки матрицы иначе возможно появление пережимов стенок формуемой детали, приводящих к трещинам и неисправимому браку.

Формовку можно осуществлять эластичной и жидкостной средой (штамповка резиной, полиуританом, применяемым в мелкосерийном производстве: самолетостроении, вагоностроении, приборостроении, радиотехнике) жидкостная формовка – гофрированных тонкостенных осесеметричных оболочек (компрессоров в системах трубопроводов и в качестве чувствительных элементов приборов).

1.1. Определение допустимых степеней деформации при формовке

Периферийный кольцевой участок фланца ограниченный радиусами и деформируется упруго.

Наибольшая глубина ребра жесткости, которую можно получить в результате рельефной формовки деталей из алюминия, мягкой стали, латуни, может ориентировочно быть определена по эмпирической формуле:

где - ширина ребра, мм;

Толщина штампуемого материала, мм.

Рисунок 3 – Пластическая и упругая области при формовке

При глубина; , а для предотвращения разрушения материала.

При больших размерах заготовки граница между пластической и упругой областью составляет.

При других отношениях граница между упругой и пластической областями составляет, где находится по

Глубина местной вытяжки определяется уравнением:

Увеличение зазора при малых радиусах закругления позволяет получить более глубокую местную вытяжку.

Для рельефной формовки в виде углублений сферической формы:

Рисунок 4 – Схема формовка углублений сферической формы

Возможные размеры местных углублений можно определить исходя из относительного удлинения штампуемого материала по зависимости:

где - длина средней линии сечения рельефа после штамповки;

Длина соответствующего участка заготовки до штамповки.

При формовке цилиндрическим пуансоном с плоским торцом и малым радиусом скругления рабочей кромки, пластически деформируется кольцевой участок фланца, ограниченный радиусом и, а также плоский участок дна детали.

Рисунок 5 – Схема формовки ребер жесткости, углублений сферической формы

1.2. Технологические расчеты при формовке

Силу рельефной штамповки можно определить по формуле:

где - удельная сила рельефной формовки, принимаемое:

для алюминия 100 – 200 МПа,

для латуни 200 – 250 МПа,

для мягкой стали 300 – 400 МПа,

Площадь проекции штампуемого рельефа на плоскость, перпендикулярную направлению действия силы, мм2.

Сила для рельефной штамповки на кривошипных прессах небольших деталей (), из тонкого материала (до 1.5 мм) может быть определена по эмпирической формуле:

где - площадь штампуемого рельефа, мм2

Коэффициент: для стали 200 – 300 МПа,

для латуни 150 – 200 МПа.

Сила при формовке полусферическим пуансоном без учета контактного трения и неравномерности толщины заготовки в очаге деформации можно определить по формуле:

При формовке ребра жесткости (рифте) пуансоном с поперечным сечением в виде кругового сегмента.

где - длина ребра, при

где - коэффициент, зависит от ширины и глубины рифте

2. Отбортовка

2.1. Отбортовка отверстий

Процесс отбортовки отверстий заключается в образовании в плоском или полом изделии с предварительно пробитым отверстием (иногда и без него) отверстия большего размера с цилиндрическими бортами или бортами другой формы.

Отбортовкой получают отверстия с диаметром 3…1000мм и толщиной = 0,3…30мм. Данный процесс широко используется в штамповочном производстве, заменяя операции вытяжки с последующей вырубкой дна. Особенно большую эффективность дает применение отбортовки отверстия при изготовлении деталей с большим фланцем, когда вытяжка затруднительна и требует нескольких переходов.

При рассматриваемом процессе происходит удлинение в тангенциальном направлении, и уменьшение толщины материала.

Для относительно высокого борта расчет диаметра исходной заготовки выполняют из условия равенства объемов материала до и после деформирования. Исходными параметрами являются диаметр отбортованного отверстия и высота борта детали (рис. 6). По этим параметрам рассчитывается требуемый диаметр исходного отверстия:

Если высота борта задана чертежом детали (рис. 6), то диаметр отверстия под отбортовку для низкого борта приближенно подсчитывают, как в случае простой гибки по формуле:

Радиус закругления рабочего ребра матрицы,

где - высота борта, мм, - радиус отбортовки, - толщина исходного материала.

В случае заданного диаметра под отбортовку высоту борта можно определить по зависимости:

Рисунок 6 – Схема для расчета параметров отбортовки - высоты борта и - диаметра отверстия под отбортовку

На высоту отбортовки большое влияние оказывает радиус. При больших его значениях высота борта значительно увеличивается.

При получении небольших отверстий под резьбу или запрессовку осей, когда конструктивно необходимо иметь цилиндрические стенки, применяется отбортовка с малым радиусом закруглений и малым зазором (рис7, а).

При применении рассматриваемой операции для увеличения жесткости конструкции: при отбортовке крупных отверстий, окон авиационных, транспортных, судостроительных конструкций, отбортовке люков, горловин, раструбов и т.д., процесс лучше производить при большой величине зазора между пуансоном и матрицей и при большом радиусе закругления матрицы (рис.7, б). В этом случае получается малая цилиндрическая часть борта.

Рисунок 7 – Варианты отбортовки: а- с малым радиусом закругления матрицы и малым зазором, б – с большим зазором

Число переходов, необходимых для получения отбортовки, определяют по коэффициенту отбортовки:

где - диаметр отверстия до отбортовки;

Диаметр отбортовки по средне линии.

Предельно допустимый коэффициент для заданного материала можно определить аналитически:

где - относительное удлинение материала;

Коэффициент, определяемый условиями отбортовки.

Наименьшая толщина у края борта составляет:

Величина коэффициента отбортовки зависит:

  1. От характера отбортовки и состояния кромок отверстия (сверлением или пробивкой получено отверстие, наличие или отсутствие заусенцев).
  2. От относительной толщины заготовки.
  3. От рода материала, его механических свойств и формы рабочей части пуансона.

Наименьшее значение коэффициента следует принимать при отбортовке рассверленных отверстий, наибольшие – пробитых. Это вызвано наклепом после пробивки. Для снятия его вводят отжиг или зачистку отверстия в зачистных штампах, что позволяет повысить пластичность материала.

Пробивку отверстий под отбортовку следует производить со стороны, противоположной направлению отбортовку, или укладывать заготовку заусенцами вверх, чтобы грань с заусенцами оказалась менее растянутой, чем закругленная грань.

При отбортовке дна предварительно вытянутого стакана с отверстием (рис. 8)общую высоту детали, полученную после деформирования можно определить по формуле:

где - глубина предварительной вытяжки.

Рисунок 8- Схема для расчета отбортовки в дне предварительно вытянутого стакана: 1-матрица, 2-пуансон, 3-прижим

В связи со значительным растяжением материала на кромке технологического отверстия в результате увеличения до происходит существенное утонение края кромки:

где - толщина кромки после утонения.

За одну операцию одновременно с отбортовкой можно произвести утонение стенки до.

При проколке отверстия максимальный диаметр для каждого вида и толщины материала, как правило, устанавливается опытным путем. Кромка торца вертикальных стенок при этом всегда остаются рваной, поэтому проколка применима только для неответственных деталей.

Технологическая сила, требуемая для отбортовки круглых отверстий, определяется по формуле:

где - придел прочности штампуемого материала, МПа.

Сила прижима при отбортовке может быть принята равной 60 % от силы прижима при вытяжке при аналогичных условиях (толщина, вид материала, диаметр кольцевой площадки под прижимом).

2. Геометрические параметры инструмента для отбортовки

Размеры рабочих деталей штампов для отбортовки круглых отверстий можно определять в зависимости от диаметра отбортовки с учетом некоторого пружинения штампуемого материала и припуска на изнашивание пуансона:

где - номинальное значение диаметра отбортованного отверстия;

Заданный допуск на диаметр отбортованного отверстия.

Матрицу изготавливают по пуансону с зазором.

Зазор зависит от толщины исходного материала и вида заготовке и может быть определен по следующим соотношениям:

  • в плоской заготовке -
  • в дне предварительно вытянутого стакана -

или из таблицы 1.

Рабочая часть пуансонов для отбортовки может иметь различную геометрию (рис. 9):

а) трактрисы, обеспечивающей минимальное усилие отбортовки;

б) конусную;

в) сферическую;

г) с большим радиусом закругления;

д) с малым радиусом закругления.

а) б) в) г) д)

Рисунок 9 – Формы рабочей части пуансонов

Пуансоны со сферической геометрией рабочей части и с малым радиусом закругления требуют наибольшего усилия отбортовки.

Таблица 1-Односторонний зазор при отбортовке

Формоизменяющие операции листовой штамповки. Формовка и отбортовка

Вытяжка

Вытяжка – формоизменение листовой заготовки в чаше- или коробообразную оболочку или заготовки в виде такой оболочки в более глубокую оболочку, происходящее за счет втягивания пуансоном в матрицу части материала, находящегося на зеркале за контуром проема (полости) матрицы, и растяжения части, находящейся внутри контура. Существуют разновидности вытяжки – осесимметричная, неосесимметричная и сложная. Неосесимметричная вытяжка – вытяжка неосесимметричной оболочки, например коробообразной, имеющей две или одну плоскости симметрии. Сложная вытяжка – вытяжка оболочки сложной формы, обычно не имеющей ни одной плоскости симметрии. Осесимметричная вытяжка – вытяжка оболочки из осесимметричной заготовки осесимметричными пуансоном и матрицей (рис. 9.39, 9.40).

Рис. 9.39. Схема вытяжки (а ) и вид полученной заготовки (б )

Рис. 9.40. Внешний вид заготовок после вытяжки (а ) и отсечки технологического отхода (б)

При вытяжке плоская заготовка 5 втягивается пуансоном 1 в отверстие матрицы 3. Во фланце заготовки при этом возникают значительные сжимающие напряжения, которые могут вызвать образование складок.

Для предотвращения этого применяют прижимы 4. Их рекомендуется использовать для вытяжки из плоской заготовки при D з – d 1 = 225, где D з диаметр плоской заготовки; d 1 – диаметр детали или полуфабриката; δ – толщина листа. Процесс характеризуется коэффициентом вытяжки т =d 1/D з. Для предотвращения отрыва дна он не должен превышать определенного значения. Глубокие детали, которые по условиям прочности нельзя вытянуть в один переход, вытягивают в несколько переходов. Значение коэффициента т выбирают по справочным таблицам в зависимости от вида и состояния заготовки. Для мягкой стали при первой вытяжке значение т принимают 0,5–0,53; для второй – 0,75–0,76 и т.д.

Усилие вытяжки цилиндрического полуфабриката в штампе с прижимом определяют приближенно по формуле

где Р 1 – собственное усилие вытяжки, ; Р2 – усилие прижима, ; п – коэффициент, значение которого выбирают по справочным таблицам в зависимости от коэффициента т; σв – предел прочности материала; F 1 – площадь сечения цилиндрической части полуфабриката, через которую передается усилие вытяжки; q – удельное усилие вытяжки; F 2 площадь контакта прижима и заготовки в начальный момент вытяжки.

Значение q выбирают по справочникам. Например, для мягкой стали оно составляет 2–3; алюминия 0,8–1,2; меди 1–1,5; латуни 1,5–2.

В зависимости от вида вытягиваемого полуфабриката пуансоны и матрицы могут быть цилиндрическими, коническими, сферическими, прямоугольными, фасонными и др. Их делают с закруглением рабочих кромок, величина которых влияет на усилие вытяжки, степень деформации, возможность образования складок на фланце. Размеры пуансона и матрицы выбирают так, чтобы зазор между ними составлял 1,35–1,5 толщины деформируемого металла. Пример пуансона для получения цилиндрических деталей показан на рис. 9.41.

Рис. 9.41.

1 корпус штампа; 2 – корпус пуансона; 3 – пуансон

Отбортовка

Это формоизменение, при котором часть листовой заготовки, расположенная вдоль ее замкнутого или незамкнутого контура, под действием пуансона смещается в матрицу, одновременно растягивается, поворачивается и превращается в борт. Образование борта из области, расположенной вдоль выпуклого замкнутого или незамкнутого контура листовой заготовки, представляет собой неглубокую вытяжку, а вдоль прямолинейного контура – гибку.

Существует два вида отбортовки – внутренняя отбортовка отверстий (рис. 9.42, а ) и внешняя отбортовка наружного контура (рис. 9.42, б ), которые различаются между собой характером деформации и схемой напряжений.

Рис. 9.42.

а – отверстий; б – наружного контура

Процесс отбортовки отверстий заключается в образовании в плоском или полом изделии с предварительно пробитым отверстием (иногда и без него) отверстия большего диаметра с цилиндрическими бортами (рис. 9.43).

Рис. 9.43.

За несколько операций в плоской заготовке можно получать отверстия с отбортовкой сложной формы (рис. 9.44).

Рис. 9.44.

Отбортовка отверстий позволяет не только получать конструктивно удачные формы различных изделий, но и экономить штампуемый металл. В настоящее время отбортовкой получают детали с диаметром отверстия 3–1000 мм при толщине материала 0,3–30,0 мм (рис. 9.45).

Рис. 9.45.

Степень деформации определяется отношением диаметра отверстия в заготовке к диаметру борта по средней линии D (рис. 9.46).

Штамповка как технологический процесс обработки заготовок, изготовленных из металла, позволяет получить готовые изделия плоского или объемного типа, отличающиеся как своей формой, так и размерами. В качестве рабочего инструмента при выполнении штамповки может выступать штамп, закрепленный на прессе или оборудовании другого типа. В зависимости от условий выполнения штамповка металла бывает горячая и холодная. Эти два вида данной технологии предполагают использование различного оборудования и соблюдение определенных технологических норм.

Особенности технологии

Ознакомиться с требованиями ГОСТ к обработке металла штампованием можно, скачав документ в формате pdf по ссылке ниже.

Кроме разделения на горячую и холодную, штамповка изделий из металла подразделяется и на ряд других категорий в зависимости от ее назначения и технологических условий. Так, операции штамповки, в результате которых происходит отделение части металлической заготовки, называются разделительными. Сюда, в частности, относятся резка, рубка и пробивка деталей из металла.

Другой категорией таких операций, в результате которых штампуемый лист металла изменяет свою форму, являются формоизменяющие штамповочные операции, часто называемые формовкой. В результате их выполнения детали из металла могут подвергаться вытяжке, холодному выдавливанию, гибке и другим процедурам по обработке.

Как уже отмечалось выше, существуют такие виды штамповки, как холодная и горячая, которые, хотя и реализуются по одному принципу, предполагающему деформирование металла, имеют ряд значимых отличий. , предполагающую их предварительный нагрев до определенной температуры, применяют преимущественно на крупных производственных предприятиях.

Это связано прежде всего с достаточно высокой сложностью такой технологической операции, для качественного выполнения которой необходимо сделать предварительный расчет и точно соблюсти степень нагрева обрабатываемой заготовки. С помощью штамповки, выполняемой по горячей технологии, из листового металла различной толщины получают такие ответственные детали, как днища котлов и другие изделия в форме полусфер, корпусные и другие элементы, используемые в судостроении.

Для нагрева деталей из металла перед их горячей штамповкой используется нагревательное оборудование, которое в состоянии обеспечить точный температурный режим. В этой функции, в частности, могут использоваться электрические, плазменные и другие нагревательные устройства. Перед началом выполнения горячей штамповки необходимо не только рассчитать нормы нагрева обрабатываемых деталей, но и разработать точный и подробный чертеж готового изделия, в котором будет учтена усадка остывающего металла.

При выполнении металлических деталей процесс формирования готового изделия протекает только за счет давления, оказываемого рабочими элементами пресса на заготовку. За счет того, что заготовки при штамповке по холодной технологии предварительно не нагреваются, они не подвержены усадке. Это позволяет изготавливать изделия законченного вида, которые не требуют дальнейшей механической доработки. Именно поэтому данная технология считается не только более удобным, но и экономически выгодным вариантом обработки.

Если квалифицированно подойти к вопросам проектирования размеров и формы заготовок и к последующему раскрою материала, то можно значительно уменьшить его расход, что особенно актуально для предприятий, выпускающих свою продукцию крупными сериями. В качестве материала, заготовки из которого успешно подвергаются штамповке, может выступать не только углеродистые или легированные стали, но также алюминиевый и медный сплавы. Более того, оснащенный соответствующим образом штамповочный пресс успешно используется для обработки заготовок из таких материалов, как резина, кожа, картон, полимерные сплавы.

Разделительное штампование, целью которого является отделение от обрабатываемой заготовки части металла, – это очень распространенная технологическая операция, используемая практически на каждом производственном предприятии. К таким операциям, которые выполняются посредством специального инструмента, установленного на штамповочный пресс, относятся резка, вырубка и пробивка.

В процессе резки металлические детали разделяются на отдельные части, причем такое разделение может осуществляться по прямой или кривой линии реза. Для выполнения резки могут использоваться различные устройства: дисковые и вибрационные станки, гильотинные ножницы и др. Резку чаще всего используют для того, чтобы раскроить металлические заготовки для их дальнейшей обработки.

Вырубка – это технологическая операция, в процессе которой из металлического листа получают детали, имеющие замкнутый контур. При помощи пробивки в заготовках из листового металла делают отверстия различной конфигурации. Каждая из таких технологических операций должна быть тщательно спланирована и подготовлена, чтобы в результате ее выполнения получилось качественное готовое изделие. В частности, должны быть точно рассчитаны геометрические параметры используемого инструмента.

Перфорированный металлический лист получается в результате вырубки отверстий на координатно-пробивном прессе

Технологическими операциями штамповки, в процессе которых осуществляется изменение начальной конфигурации металлических деталей, являются формовка, гибка, вытяжка, отбортовка и обжим. Гибка – это наиболее распространенная формоизменяющая операция, в процессе которой на поверхности металлической заготовки формируются участки с изгибом.

Вытяжка – это объемная штамповка, целью выполнения которой является получение из плоской металлической детали объемного изделия. Именно при помощи вытяжки металлический лист превращается в изделия цилиндрической, конической, полусферической или коробчатой конфигурации.

По контуру изделий из листового металла, а также вокруг отверстий, которые в них выполнены, часто необходимо сформировать бортик. С этой задачей успешно справляется отбортовка. Такой обработке, выполняемой посредством специального инструмента, подвергают и концы труб, на которые необходимо установить фланцы.

При помощи обжима, в отличие от отбортовки, концы труб или края полостей в заготовках из листового металла не расширяют, а сужают. При выполнении такой операции, осуществляемой при помощи специальной конической матрицы, происходит наружное обжатие листового металла. Формовка, которая также является одной из разновидностей штамповки, предполагает изменение формы отдельных элементов штампованной детали, при этом наружный контур детали остается неизменным.

Объемная штамповка, которая может выполняться по различным технологиям, требует не только тщательных предварительных расчетов и разработки сложных чертежей, но и использования специально изготовленного оборудования, поэтому реализовать такую технологию в домашних условиях проблематично.

Инструменты и оборудование

Даже обработка мягких металлов, в частности штамповка алюминия, требует применения специального оборудования, в качестве которого могут выступать гильотинные ножницы, кривошипный или . Кроме того, необходимо умение производить расчеты расхода материала и разрабатывать технические чертежи. При этом следует учитывать требования, которые содержит соответствующий ГОСТ.

Штамповку, для выполнения которой не требуется предварительный нагрев обрабатываемой заготовки, выполняют преимущественно на гидравлических прессах, производство которых регулирует ГОСТ. Разнообразие серийных моделей этого оборудования позволяет подбирать станок для производства изделий различных конфигураций и габаритных размеров.

Выбирая пресс для выполнения штамповки, в первую очередь следует ориентироваться задачи, для решения которых он необходим. Например, для выполнения таких технологических операций, как вырубка или пробивка, используют штамповочное оборудование простого действия, ползун и шайбы которого в процессе обработки совершают небольшой ход. Для того чтобы выполнить вытяжку, требуется оборудование двойного действия, ползун и шайбы которого в процессе обработки совершают значительно больший ход.

По своей конструкции, как указывает ГОСТ, оборудование для выполнения штамповки делится на несколько типов, а именно:

  • однокривошипное;
  • двухкривошипное;
  • четырехкривошипное.

На прессах двух последних категорий устанавливают ползуны более крупных размеров. Однако вне зависимости от конструктивного исполнения каждый штамповочный пресс оснащается матрицей. Основное движение, за счет которого и выполняется обработка заготовки на штамповочном прессе, совершает ползун, нижняя часть которого соединена с подвижной частью штампа. Для сообщения такого движения ползуну пресса приводной электродвигатель связывается с ним посредством таких элементов кинематической цепи, как:

  • клиноременная передача;
  • пусковая муфта;
  • шайбы;
  • кривошипный вал;
  • шатун, при помощи которого можно регулировать величину рабочего хода ползуна.

Для запуска ползуна, который совершает возвратно-поступательное движение по направлению к рабочему столу пресса, используется ножная пресс-педаль, напрямую связанная с пусковой муфтой.

Несколько другим принципом работы отличается четырехшатунный пресс, рабочие органы которого создают усилие с центром, приходящимся на середину четырехугольника, образуемого четырьмя шатунами. Благодаря тому, что усилие, создаваемое таким прессом, приходится не на центр ползуна, это устройство успешно используется для того, чтобы изготавливать изделия даже очень сложной конфигурации. Прессы данной категории, в частности, применяют для того, чтобы изготовить асимметричные изделия, отличающиеся значительными габаритами.

Чтобы изготовить изделия более сложной конфигурации, используют прессовое оборудование пневматического типа, конструктивная особенность которого заключается в том, что оно может быть оснащено двумя или даже тремя ползунами. В прессе двойного действия применяются одновременно два ползуна, один из которых (внешний) обеспечивает фиксацию заготовки, а второй (внутренний) выполняет вытяжку поверхности обрабатываемого металлического листа. Первым в работе такого пресса, конструктивные параметры которого также регламентирует ГОСТ, участвует внешний ползун, фиксирующий заготовку при достижении самой нижней точки. После того как внутренний ползун выполнит свою работу по вытяжке листового металла, внешний рабочий орган поднимается и освобождает заготовку.

Для штамповки тонколистового металла используются преимущественно специальные фрикционные прессы, технические параметры которых также устанавливает ГОСТ. Чтобы обрабатывать более толстый листовой металл, лучше всего применять гидравлическое штамповочное оборудование, которое оснащено более надежными шайбами и другими конструктивными элементами.

Отдельную категорию составляет оборудование, при помощи которого выполняется штамповка взрывом. На таких устройствах, в которых энергия управляемого взрыва преобразуется в усилие, оказываемое на металл, обработке подвергают металлические заготовки значительной толщины. Работа такого оборудования, считающегося инновационным, даже на видео выглядит очень эффектно.

Чтобы получаемый сгиб и общая конфигурация готового изделия из металла отличались высоким качеством, в последнее время стали активно использовать прессы, оснащенные встроенными вибрационными ножницами. Использование такого оборудования с более короткими ножками позволяет изготавливать изделия практически любой конфигурации.

Таким образом, выполнение штамповки листового металла требует наличия не только специализированного оборудования, но и соответствующих навыков и знаний, поэтому реализовать такую технологию в домашних условиях достаточно сложно.

Геометрические параметры инструмента для отбортовки. Отбортовка отверстий Процесс отбортовки отверстий заключается в образовании в плоском или полом изделии с предварительно пробитым отверстием иногда и без него отверстия большего размера с цилиндрическими бортами или бортами другой формы. Особенно большую эффективность дает применение отбортовки отверстия при изготовлении деталей с большим фланцем когда вытяжка затруднительна и требует нескольких переходов...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 113

ЛЕКЦИЯ № 16

Формоизменяющие операции листовой штамповки. Формовка и отбортовка

План лекции

1. Формовка.

1.1. Определение допустимых степеней деформации при формовке.

1.2. Технологические расчеты при формовке.

2. Отбортовка.

2.1. Отбортовка отверстий.

2.2. Геометрические параметры инструмента для отбортовки.

1. Формовка

Рельефная формовка представляет собой изменение формы заготовки, заключающейся в образовании местных углублений и выпуклостей за счет растяжения материала.

Кроме местных углублений и выпукло – вогнутых рельефов формовкой получают рисунки и ребра жесткости. Рационально выполненные ребра жесткости позволяют существенно повысить жесткость плоских и неглубоких штампованных деталей, появляется возможность уменьшения толщины заготовки и ее массы. Применение формовки замен вытяжки при изготовлении неглубоких деталей с фланцем позволяет получить экономию металла вследствие уменьшения поперечных размеров заготовки. Повышение прочности, полученной в результате деформационного упрочнения, превосходит уменьшение прочности вследствие утонения заготовки в зоне деформации.

Форма пуансона существенно влияет на место расположение очага деформации. При деформировании полусферическим пуансоном зона пластической деформации состоит из двух участков: контактирующего с пуансоном и свободного участка, на котором отсутствуют внешние нагрузки.

Рисунок 1 – Формовка ребра жесткости и полусферических углублений

При формовке полусферических углублений возможно появление трещин на некотором удалении от полюса полусферы. Это объясняется тем, что в полюсе и его окрестности заготовка плотно прилегает к пуансону и контактные силы трения, возникающие при скольжении заготовки (при ее утонении) относительно пуансона, сдерживают деформацию в полюсе более интенсивно, чем на периферийных участках.

Формовкой цилиндрическим пуансоном с плоским торцом можно получить углубления высотой (0.2 – 0.3) диаметра пуансона. Для получения более глубоких полостей применяют формовку с предварительным набором металла в виде кольцевого выступа (рифта), а при штамповке деталей их алюминиевых сплавов – дифференцированный нагрев фланца.

Рисунок 2 – Формовка цилиндрическим пуансоном с плоским торцом и формовка с предварительным набором

Заготовка при формовке частично обтягивается по пуансону, а частично по матрице, поэтому глубина матрицы должна быть больше высоты ребра или углубления, а радиус углового участка пуансона существенно меньше радиуса скругления кромки матрицы иначе возможно появление пережимов стенок формуемой детали, приводящих к трещинам и неисправимому браку.

Формовку можно осуществлять эластичной и жидкостной средой (штамповка резиной, полиуританом, применяемым в мелкосерийном производстве: самолетостроении, вагоностроении, приборостроении, радиотехнике) жидкостная формовка – гофрированных тонкостенных осесеметричных оболочек (компрессоров в системах трубопроводов и в качестве чувствительных элементов приборов).

1.1. Определение допустимых степеней деформации при формовке

Периферийный кольцевой участок фланца ограниченный радиусами и деформируется упруго.

Наибольшая глубина ребра жесткости, которую можно получить в результате рельефной формовки деталей из алюминия, мягкой стали, латуни, может ориентировочно быть определена по эмпирической формуле:

где - ширина ребра, мм;

Толщина штампуемого материала, мм.

Рисунок 3 – Пластическая и упругая области при формовке

При глубина; , а для предотвращения разрушения материала.

При больших размерах заготовки граница между пластической и упругой областью составляет.

При других отношениях граница между упругой и пластической областями составляет, где находится по

Глубина местной вытяжки определяется уравнением:

Увеличение зазора при малых радиусах закругления позволяет получить более глубокую местную вытяжку.

Для рельефной формовки в виде углублений сферической формы:

А; .

Рисунок 4 – Схема формовка углублений сферической формы

Возможные размеры местных углублений можно определить исходя из относительного удлинения штампуемого материала по зависимости:

где - длина средней линии сечения рельефа после штамповки;

Длина соответствующего участка заготовки до штамповки.

При формовке цилиндрическим пуансоном с плоским торцом и малым радиусом скругления рабочей кромки, пластически деформируется кольцевой участок фланца, ограниченный радиусом и, а также плоский участок дна детали.

Рисунок 5 – Схема формовки ребер жесткости, углублений сферической формы

1.2. Технологические расчеты при формовке

Силу рельефной штамповки можно определить по формуле:

где - удельная сила рельефной формовки, принимаемое:

для алюминия 100 – 200 МПа,

для латуни 200 – 250 МПа,

для мягкой стали 300 – 400 МПа,

Площадь проекции штампуемого рельефа на плоскость, перпендикулярную направлению действия силы, мм 2 .

Сила для рельефной штамповки на кривошипных прессах небольших деталей (), из тонкого материала (до 1.5 мм) может быть определена по эмпирической формуле:

где - площадь штампуемого рельефа, мм 2

Коэффициент: для стали 200 – 300 МПа,

Для латуни 150 – 200 МПа.

Сила при формовке полусферическим пуансоном без учета контактного трения и неравномерности толщины заготовки в очаге деформации можно определить по формуле:

при

При формовке ребра жесткости (рифте) пуансоном с поперечным сечением в виде кругового сегмента.

где - длина ребра, при

Или,

где - коэффициент, зависит от ширины и глубины рифте

2. Отбортовка

2.1. Отбортовка отверстий

Процесс отбортовки отверстий заключается в образовании в плоском или полом изделии с предварительно пробитым отверстием (иногда и без него) отверстия большего размера с цилиндрическими бортами или бортами другой формы.

Отбортовкой получают отверстия с диаметром 3…1000мм и толщиной = 0,3…30мм. Данный процесс широко используется в штамповочном производстве, заменяя операции вытяжки с последующей вырубкой дна. Особенно большую эффективность дает применение отбортовки отверстия при изготовлении деталей с большим фланцем, когда вытяжка затруднительна и требует нескольких переходов.

При рассматриваемом процессе происходит удлинение в тангенциальном направлении, и уменьшение толщины материала.

Для относительно высокого борта расчет диаметра исходной заготовки выполняют из условия равенства объемов материала до и после деформирования. Исходными параметрами являются диаметр отбортованного отверстия и высота борта детали (рис. 6). По этим параметрам рассчитывается требуемый диаметр исходного отверстия:

где.

Если высота борта задана чертежом детали (рис. 6), то диаметр отверстия под отбортовку для низкого борта приближенно подсчитывают, как в случае простой гибки по формуле:

где;

Радиус закругления рабочего ребра матрицы,

или

где - высота борта, мм, - радиус отбортовки, - толщина исходного материала.

В случае заданного диаметра под отбортовку высоту борта можно определить по зависимости:

Рисунок 6 – Схема для расчета параметров отбортовки - высоты борта и - диаметра отверстия под отбортовку

На высоту отбортовки большое влияние оказывает радиус. При больших его значениях высота борта значительно увеличивается.

При получении небольших отверстий под резьбу или запрессовку осей, когда конструктивно необходимо иметь цилиндрические стенки, применяется отбортовка с малым радиусом закруглений и малым зазором (рис7, а).

При применении рассматриваемой операции для увеличения жесткости конструкции: при отбортовке крупных отверстий, окон авиационных, транспортных, судостроительных конструкций, отбортовке люков, горловин, раструбов и т.д., процесс лучше производить при большой величине зазора между пуансоном и матрицей и при большом радиусе закругления матрицы (рис.7, б). В этом случае получается малая цилиндрическая часть борта.

а) б)

Рисунок 7 – Варианты отбортовки: а- с малым радиусом закругления матрицы и малым зазором, б – с большим зазором

Число переходов, необходимых для получения отбортовки, определяют по коэффициенту отбортовки:

где - диаметр отверстия до отбортовки;

Диаметр отбортовки по средне линии.

Предельно допустимый коэффициент для заданного материала можно определить аналитически:

где - относительное удлинение материала;

Коэффициент, определяемый условиями отбортовки.

Наименьшая толщина у края борта составляет:

Величина коэффициента отбортовки зависит:

  1. От характера отбортовки и состояния кромок отверстия (сверлением или пробивкой получено отверстие, наличие или отсутствие заусенцев).
  2. От относительной толщины заготовки.
  3. От рода материала, его механических свойств и формы рабочей части пуансона.

Наименьшее значение коэффициента следует принимать при отбортовке рассверленных отверстий, наибольшие – пробитых. Это вызвано наклепом после пробивки. Для снятия его вводят отжиг или зачистку отверстия в зачистных штампах, что позволяет повысить пластичность материала.

Пробивку отверстий под отбортовку следует производить со стороны, противоположной направлению отбортовку, или укладывать заготовку заусенцами вверх, чтобы грань с заусенцами оказалась менее растянутой, чем закругленная грань.

При отбортовке дна предварительно вытянутого стакана с отверстием (рис. 8)общую высоту детали, полученную после деформирования можно определить по формуле:

где - глубина предварительной вытяжки.

Рисунок 8- Схема для расчета отбортовки в дне предварительно вытянутого стакана: 1-матрица, 2-пуансон, 3-прижим

В связи со значительным растяжением материала на кромке технологического отверстия в результате увеличения до происходит существенное утонение края кромки:

где - толщина кромки после утонения.

За одну операцию одновременно с отбортовкой можно произвести утонение стенки до.

При проколке отверстия максимальный диаметр для каждого вида и толщины материала, как правило, устанавливается опытным путем. Кромка торца вертикальных стенок при этом всегда остаются рваной, поэтому проколка применима только для неответственных деталей.

Технологическая сила, требуемая для отбортовки круглых отверстий, определяется по формуле:

где - придел прочности штампуемого материала, МПа.

Сила прижима при отбортовке может быть принята равной 60 % от силы прижима при вытяжке при аналогичных условиях (толщина, вид материала, диаметр кольцевой площадки под прижимом).

2. Геометрические параметры инструмента для отбортовки

Размеры рабочих деталей штампов для отбортовки круглых отверстий можно определять в зависимости от диаметра отбортовки с учетом некоторого пружинения штампуемого материала и припуска на изнашивание пуансона:

где - номинальное значение диаметра отбортованного отверстия;

Заданный допуск на диаметр отбортованного отверстия.

Матрицу изготавливают по пуансону с зазором.

Зазор зависит от толщины исходного материала и вида заготовке и может быть определен по следующим соотношениям:

  • в плоской заготовке -
  • в дне предварительно вытянутого стакана -

или из таблицы 1.

Рабочая часть пуансонов для отбортовки может иметь различную геометрию (рис. 9):

а) трактрисы, обеспечивающей минимальное усилие отбортовки;

б) конусную;

в) сферическую;

г) с большим радиусом закругления;

д) с малым радиусом закругления.

А) б) в) г) д)

Рисунок 9 – Формы рабочей части пуансонов

Пуансоны со сферической геометрией рабочей части и с малым радиусом закругления требуют наибольшего усилия отбортовки.

Таблица 1-Односторонний зазор при отбортовке

Вид обработки

Толщина материала заготовки

Плоская заготовка

0,25

0,45

0,85

1,00

1,30

1,70

Дно предварительно вытянутого стакана

0,25

0,45

0,55

0,75

0,90

1,10

1,50

Другие похожие работы, которые могут вас заинтересовать.вшм>

6634. Формоизменяющие операции листовой штамповки. Гибка 617.41 KB
Виды гибки. Конструктивные особенности штампов для гибки. Виды гибки Это операции обработки металлов давлением в результате которых изменяется форма заготовки путем пластического деформирования. В зависимости от этих форм различают следующие виды гибки: одноугловую или V образную рис.
6633. Формоизменяющие операции листовой штамповки. Вытяжка 217.88 KB
Виды вытяжки. Виды вытяжки Вытяжка – это процесс превращения плоской заготовки плоской или полой в полое изделие. В процессе вытяжки из-за наличия избыточного материала во фланце происходит вытеснение его и перемещение по пуансону. При вытяжке плоская заготовка перемещаясь во время вытяжки изменяет свои размеры и занимает ряд промежуточных положений.
6631. Формоизменяющие операции листовой штамповки. Обжим и раздача 819.4 KB
Определение размеров исходной заготовки. Определение размеров исходной заготовки. При обжиме открытый конец полой заготовки или трубы вталкивается в воронкообразную рабочую часть матрицы имеющую форму готового изделия или промежуточного перехода...
6636. Технология холодной листовой штамповки. Разделительные операции 410.26 KB
Отрезка – это полное отделение одной части заготовки от другой по незамкнутому контуру путем сдвига. Отрезка – это заготовительная операция, в процессе которой осуществляется резка листа на полосы заданной длины, резка ленты на полосы. Операция отрезки осуществляется на специальных машинах-ножницах или на прессах в штампах.
6635. Технология холодной листовой штамповки. Раскрой материала 91.88 KB
Раскрой материала. Раскрой листа на полосы. Существует два основных способа получения деталей: с перемычкой раскрой с отходом; без перемычки раскрой без отхода. Чаще применяется раскрой с перемычкой.
5556. Разработка системы управления РТК штамповки 423.86 KB
Целью курсового проекта является разработка системы управления РТК штамповки. Актуальность разработки данной системы управления состоит в том что она позволит снизить прежде всего долю ручного труда что позволит повысить качество выпускаемой продукции и экономические затраты так как РТК внедряется на базе существующих прессов. Определим вид автоматического устройства управления которое будет управлять объектом. Данный объект управления – сложный процесс состоящий из отдельных операций.
16016. Технологические основы процесса объемной штамповки 632.62 KB
Закрытая штамповка обеспечивает получение поковок без заусенца, благодаря чему заготовка может быть уменьшена на объем этого заусенца, а отсутствие заусенца по периметру поковки ведет к сокращению цикла технологического процесса и экономии электроэнергии и штамповой стали.
69. Операции над 3D объектами 276.43 KB
Как и в первом случае существует возможность выбора типа массива прямоугольный или круговой: Rectngulr or Polr rry. В случае прямоугольного массива необходимо задать количество строк столбцов и уровней: Number of rows Number of collumns Number of levels а также дистанцию между строками столбцами и уровнями: Distnce between rows и т. В случае кругового массива необходимо указать количество элементов: Number of items угол заполнения: ngle to fill 0360 поворачивать или нет объекты при размещении в пространстве:...
72. Операции над 3D телами 23.41 KB
Сведения из теории Логические операции Boolen Объединение Union Раздел главного меню “Изменить Редактирование сплошных тел â€: Объединение Commnd line Командная строка: _union Рис 1. Выбранными объектами могут быть либо регионы либо тела которые лежат в любых плоскостях. Результатом выполнения данной операции является тело которое включает в себя общие объемы всех выбранных тел.
3314. Операции над предикатами 62.34 KB
Методы эмпирического познания: наблюдение сравнение эксперимент. Наблюдение как средство познания дает первичную информацию это преднамеренное и целенаправленное восприятие явлений и процессов без прямого вмешательства в их течение подчиненное задачам научного исследования. для познания объектов их сравнение должно осуществляться по наиболее важным существенным для данного явления признакам. Методы теоретического познания: абстрагирование идеализация формализация и др.