Диффузии уравнение. Уравнение диффузии

В гл. ХIII, § 2, 6, мы исследовали интегральное уравнение (56) для теплопроводности и диффузии. Из метода его вывода ясно, что это уравнепие применимо и в более общем случае, рассматриваемом в этом пункте. Мы увидим, что в действительности оно имеет еще более общее значение. В самом деле, согласно принципу, изложенному в гл. ХIII, § 2, 3, функции, входящие в это уравнение, можно рассматривать как некоторые вероятности. Поэтому, если состояние некоторой физической системы определяется переменной зависящей от времени статистическим образом, т. е. совершающей некоторого рода броуновское движение, то это движение опять-таки будет описываться интегральным уравнением (51).

Если есть вероятность того, что система в момент времени находится между вероятность того, что система в течение времени переходит из начального положения, лежащего между конечное положение, лежащее между то удовлетворяет линейному интегральному уравнению:

ядро которого вообще говоря, несимметрично.

В случае обыкновенного броуновского движения, при отсутствии внешних сил, ядро симметрично относительно и имеет вид, определенный в гл. ХIII, §2, (56а). Там же указано решение "уравнения (8) в этом случае. Чтобы найти решение в общем случае, целесообразно преобразовать интегральное уравнение (8) в дифференциальное уравнепие следующим способом.

Введем сначала в уравнепие (8) вместо новую переменную представляющую собой смещение системы за время Тогда уравнение (8) примет вид:

где выражение очевидно, равно вероятности того, что система сместится за время из начального положения х на расстояние между и Примем теперь, что очень мало, и разложим левую часть (9) по степеням

с точностью до членов первого порядка, а правую часть по степеням у. Тогда мы получим

где величины имеют значение:

Из определения функции как вероятности непосредственно следует, что Предположим теперь, что существуют предельные значения:

Тогда из (10) получается дифференциальное уравнение для функции

где есть оператор

Это уравнение называется в статистическоё физике дифференциальным уравнением Фоккера-Планка Оно имеет самые разнообразные применения.

Если механическая система испытывает беспорядочные флуктуации иод действием внешних сил, с одной стороны, и вследствие теплового движения молекул - с другой, как это имеет место при обыкновенном броуновском движении, то функция согласно (11) и (12), есть средняя скорость приобретаемая частицами под действием внешних сил. Далее, в этом случае а все при тождественно равны нулю. Таким, образом, (13) переходит в обобщенное уравнение диффузии (6), где есть коэффициент диффузии. Согласно (11) и (12):

т. е. равно среднему квадрату смещения, деленному на соотношение, которое мы уже встречали в гл. XIII, § 2, (23) под названием формулы Эйнштейна.

Если внешние силы отсутствуют, т. е. если функция в (8) симметрична относительно то функция согласно (12), тождественно равна нулю, и (13) переходит в обыкновенное дифференциальное уравнение диффузии гл. XIII, § 1 (22). Поэтому всякая функция, определяемая интегральным уравнением (50) гл. § 2, должна одновременно удовлетворять уравнению (22) гл.

Если же внешние силы не равны нулю, то можно найти стационарное решение и уравнения Фоккера-Планка, соответствующее состоянию, устанавливающемуся через достаточно большой промежуток времени независимо от начального состояния. В этом случае и есть вероятность пребывания системы в промежутке между или относительное число тождественных систем, находящихся в этом интервале, если в начальный момент они были распределены

· Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение

См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

\frac{\partial\varphi(\mathbf{r},t)}{\partial t} = \nabla \cdot \big[ D(\varphi,\mathbf{r}) \ \nabla\varphi(\mathbf{r},t) \big],

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый диффузионный коэффициент для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

\frac{\partial\varphi(\mathbf{r},t)}{\partial t} = \sum_{i=1}^3\sum_{j=1}^3 \frac{\partial}{\partial x_i}\left

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

\frac{\partial\phi(\mathbf{r},t)}{\partial t} = D\nabla^2\phi(\mathbf{r},t),

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D уравнение имеет вид:

\frac{\partial}{\partial t}c(x,\;t)=\frac{\partial}{\partial x}D\frac{\partial}{\partial x}{c(x,\;t)}+f(x,\;t).

При постоянном D приобретает вид:

\frac{\partial}{\partial t}c(x,\;t)=D\frac{\partial^2}{\partial x^2}{c(x,\;t)}+f(x,\;t),

где c(x,\;t) - концентрация диффундирующего вещества, a f(x,\;t) - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=(\nabla,\;D\nabla c(\vec{r},\;t))+f(\vec{r},\;t),

где \nabla=(\partial_x,\;\partial_y,\;\partial_z) - оператор набла , а (\;,\;) - скалярное произведение. Оно также может быть записано как

\partial_t c=\mathbf{div}\,(D\,\mathbf{grad}\,c)+f,

а при постоянном D приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=D\Delta c(\vec{r},\;t)+f(\vec{r},\;t),

где \Delta=\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} - оператор Лапласа .

n -мерный случай

n-мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n-мерные версии соответствующих операторов:

\nabla=(\partial_1,\;\partial_2,\;\ldots,\;\partial_n), \Delta=\nabla^2=\partial_1^2+\partial_2^2+\ldots+\partial_n^2.

Это касается и двумерного случая n=2.

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

\Phi=-\varkappa\frac{\partial c}{\partial x} (одномерный случай), \mathbf j=-\varkappa\nabla c (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

\frac{\partial c}{\partial t}+\frac{\partial\Phi}{\partial x}=0 (одномерный случай), \frac{\partial c}{\partial t}+\mathrm{div}\,\mathbf j=0 (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n-мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c(x,\;t)=\int\limits_{-\infty}^{+\infty}c(x",\;0)c_f(x-x",\;t)\,dx"=\int\limits_{-\infty}^{+\infty}c(x",\;0)\frac{1}{\sqrt{4\pi Dt}}\exp\left(-\frac{(x-x")^2}{4Dt}\right)\,dx".

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

-(\nabla,\;D\nabla c(\vec{r}))=f(\vec{r}).

  • При D, не зависящем от \vec{r}, стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при f=0):
\Delta c(\vec{r})=-\frac{f(\vec{r})}{D}, \Delta c(\vec{r})=0.

Постановка краевых задач

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и t\geqslant t_0, удовлетворяющее условию u(x,\;t_0)=\varphi(x)\quad(-\infty, где \varphi(x) - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области -\infty\leqslant x\leqslant +\infty и t\geqslant t_0, удовлетворяющее условиям

\left\{\begin{array}{l}

u(x,\;t_0)=\varphi(x),\quad(0 где \varphi(x) и \mu(t) - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0\leqslant x\leqslant l и -\infty, удовлетворяющее условиям

\left\{\begin{array}{l}

u(0,\;t)=\mu _1(t), \\ u(l,\;t)=\mu _2(t), \end{array}\right. где \mu_1(t) и \mu_2(t) - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u_t=a^2 u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f(x,\;t)=0, то такое уравнение называют однородным , в противном случае - неоднородным .

u(x,\;0)=\varphi(x),\quad 0\leqslant x\leqslant l - начальное условие в момент времени t=0, температура в точке x задается функцией \varphi(x). \left.\begin{array}{l}

u(0,\;t)=\mu_1(t), \\ u(l,\;t)=\mu_2(t), \end{array}\right\}\quad 0\leqslant t\leqslant T - краевые условия. Функции \mu_1(t) и \mu_2(t) задают значение температуры в граничных точках 0 и l в любой момент времени t.

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай (\alpha_i^2+\beta_i^2\ne 0,\;(i=1,\;2)).

\begin{array}{l}

\alpha_1 u_x(0,\;t)+\beta_1 u(0,\;t)=\mu_1(t), \\ \alpha_2 u_x(l,\;t)+\beta_2 u(l,\;t)=\mu_2(t). \end{array}

Если \alpha_i=0,\;(i=1,\;2), то такое условие называют условием первого рода , если \beta_i=0,\;(i=1,\;2) - второго рода , а если \alpha_i и \beta_i отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция u(x,\;t) в пространстве D\times,\;D\in\R^n, удовлетворяет однородному уравнению теплопроводности \frac{\partial u}{\partial t}-a^2\Delta u=0, причем D - ограниченная область. Принцип максимума утверждает, что функция u(x,\;t) может принимать экстремальные значения либо в начальный момент времени, либо на границе области D.

Напишите отзыв о статье "Уравнение диффузии"

Примечания

В частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

История происхождения

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D уравнение имеет вид:

\frac{\partial}{\partial t}c(x,\;t)=\frac{\partial}{\partial x}D\frac{\partial}{\partial x}{c(x,\;t)}+f(x,\;t).

При постоянном D приобретает вид:

\frac{\partial}{\partial t}c(x,\;t)=D\frac{\partial^2}{\partial x^2}{c(x,\;t)}+f(x,\;t),

где c(x,\;t) - концентрация диффундирующего вещества, a f(x,\;t) - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=(\nabla,\;D\nabla c(\vec{r},\;t))+f(\vec{r},\;t),

где \nabla=(\partial_x,\;\partial_y,\;\partial_z) - оператор набла , а (\;,\;) - скалярное произведение. Оно также может быть записано как

\partial_t c=\mathbf{div}\,(D\,\mathbf{grad}\,c)+f,

а при постоянном D приобретает вид:

\frac{\partial}{\partial t} c(\vec{r},\;t)=D\Delta c(\vec{r},\;t)+f(\vec{r},\;t),

где \Delta=\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} - оператор Лапласа .

n -мерный случай

n-мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n-мерные версии соответствующих операторов:

\nabla=(\partial_1,\;\partial_2,\;\ldots,\;\partial_n), \Delta=\nabla^2=\partial_1^2+\partial_2^2+\ldots+\partial_n^2.

Это касается и двумерного случая n=2.

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

\Phi=-\varkappa\frac{\partial c}{\partial x} (одномерный случай), \mathbf j=-\varkappa\nabla c (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

\frac{\partial c}{\partial t}+\frac{\partial\Phi}{\partial x}=0 (одномерный случай), \frac{\partial c}{\partial t}+\mathrm{div}\,\mathbf j=0 (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n-мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c(x,\;t)=\int\limits_{-\infty}^{+\infty}c(x",\;0)c_f(x-x",\;t)\,dx"=\int\limits_{-\infty}^{+\infty}c(x",\;0)\frac{1}{\sqrt{4\pi Dt}}\exp\left(-\frac{(x-x")^2}{4Dt}\right)\,dx".

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

-(\nabla,\;D\nabla c(\vec{r}))=f(\vec{r}).

  • При D, не зависящем от \vec{r}, стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при f=0):
\Delta c(\vec{r})=-\frac{f(\vec{r})}{D}, \Delta c(\vec{r})=0.

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и t\geqslant t_0, удовлетворяющее условию u(x,\;t_0)=\varphi(x)\quad(-\infty, где \varphi(x) - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области -\infty\leqslant x\leqslant +\infty и t\geqslant t_0, удовлетворяющее условиям

\left\{\begin{array}{l}

u(x,\;t_0)=\varphi(x),\quad(0 где \varphi(x) и \mu(t) - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0\leqslant x\leqslant l и -\infty, удовлетворяющее условиям

\left\{\begin{array}{l}

u(0,\;t)=\mu _1(t), \\ u(l,\;t)=\mu _2(t), \end{array}\right. где \mu_1(t) и \mu_2(t) - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u_t=a^2 u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f(x,\;t)=0, то такое уравнение называют однородным , в противном случае - неоднородным .

u(x,\;0)=\varphi(x),\quad 0\leqslant x\leqslant l - начальное условие в момент времени t=0, температура в точке x задается функцией \varphi(x). \left.\begin{array}{l}

u(0,\;t)=\mu_1(t), \\ u(l,\;t)=\mu_2(t), \end{array}\right\}\quad 0\leqslant t\leqslant T - краевые условия. Функции \mu_1(t) и \mu_2(t) задают значение температуры в граничных точках 0 и l в любой момент времени t.

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай (\alpha_i^2+\beta_i^2\ne 0,\;(i=1,\;2)).

\begin{array}{l}

\alpha_1 u_x(0,\;t)+\beta_1 u(0,\;t)=\mu_1(t), \\ \alpha_2 u_x(l,\;t)+\beta_2 u(l,\;t)=\mu_2(t). \end{array}

Если \alpha_i=0,\;(i=1,\;2), то такое условие называют условием первого рода , если \beta_i=0,\;(i=1,\;2) - второго рода , а если \alpha_i и \beta_i отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция u(x,\;t) в пространстве D\times,\;D\in\R^n, удовлетворяет однородному уравнению теплопроводности \frac{\partial u}{\partial t}-a^2\Delta u=0, причем D - ограниченная область. Принцип максимума утверждает, что функция u(x,\;t) может принимать экстремальные значения либо в начальный момент времени, либо на границе области D.

{{#ifeq: Image:Wiki_letter_w.svg|none||Шаблон:!class ="ambox-image"Шаблон:! }}

ДИФФУЗИИ УРАВНЕНИЕ - дифференциальное уравнение с частными производными 2-го порядка, описывающее процесс диффузии в случае, когда перенос вещества вызван лишь градиентом его концентрации (в отличие от термодиффузии и т. п.). Д. у. чаще всего записывают в виде

где и(x, t) - концентрация вещества в точке среды в момент времени t, D - коэф. , q - коэф. поглощения, a F - интенсивность источников вещества. Величины D, q и F обычно являются ф-циями x и t , а также могут зависеть от концентрации и(x, t) . B последнем случае ур-ние (1) становится нелинейным. В коэфф. диффузии D является тензорным полем.

Наиб. полно исследовано линейное Д. у., когда коэф. диффузии D и поглощения q - пост. величины. В этом случае ур-ние (1) является ур-нием параболич. типа, для к-poro в матем. разработаны разл. методы решения: метод разделения переменных, метод источников или функций Грина (см. также Винеровский функциональный интеграл) , метод интегр. преобразований и т. д. Для выделения единств. решения линейного ур-ния (1) необходимо также задать нач. и граничные условия (если диффундирующее вещество заполняет конечный объём V , огранич. боковой поверхностью S ). Обычно рассматривают след. линейные граничные условия для Д. у.: 1) на границе S поддерживается заданное распределение вещества u 0 (x, t): на S поддерживается заданная потока вещества, входящего в V через S:

где - внутр. нормаль к поверхности S; 3) S полупроницаема, и диффузия во внеш. среду с заданной концентрацией и 0 (x, t )через S происходит по линейному закону

Простейшее Д. у.

с нач. условием имеет решение вида


фундам. решение Д. у. (2).

Методы решения Д. у. с перем. коэф. диффузии менее развиты. В нек-рых частных случаях, напр. если D зависит только от концентрации и , можно аналитически найти точные решения Д. у. с перем. D .

Нелинейные матем. модели диффузии и (ур-ние и граничные условия) условно делят на след. классы: 1) от концентрации и зависят D или q (нелинейность 1-го рода); 2) нелинейность содержится в граничных условиях (нелинейность 2-го рода); 3) нелинейность возникает вследствие зависимости мощностей внутр. источников F от концентрации и (нелинейность 3-го рода, см. Диссипативные структуры ).

Одномерные нелинейные Д. у. можно решить разл. приближёнными аналитич. методами. Двухмерные и трёхмерные нелинейные Д. у. при сложной конфигурации границ области и сложных законах изменения характеристик среды, внеш. и внутр. источников вещества, перем. границ области, где происходит диффузия, поддаются решению только числ. методами с применением ЭВМ. С матем. точки зрения Д. у., являясь частным случаем дифференц. ур-ния, описывающего процесс установления равновесного распределения, совпадает с ур-нием теплопроводности и аналогично Навъе - Стокса уравнению для ламинарного потока несжимаемой жидкости и т. д.

Лит.: Владимиров В. С., Уравнения математической физики, 4 изд., M., 1981; Коздоба Л. A., Методы решения нелинейных задач теплопроводности, M., 1975; Pайченко А. И., Математическая теория диффузии в приложениях, К., 1981; Crank J., The mathematics of diffusion, 2 ed., Oxf., 1975. С. Я . Азаков .

Процессов в твердых телах.

Определение диффузии. Первое и второе уравнения Фика.

Определим диффузию как процесс переноса вещества из одной части системы в другую, происходящий под действием градиента концентрации. Отметим, однако, что градиент концентрации – важная, но не единственная причина, вызывающая перенос вещества в системе.

При свободной диффузии не взаимодействующих между собой частиц (в отсутствии приложенных внешних сил) в однородном и изотропном твердом теле поток диффузионных частиц https://pandia.ru/text/80/099/images/image002_18.gif" width="53" height="25 src="> (для одномерного случая). Связь между ними определяется первым законом Фика:

где - коэффициент диффузии атомов. Из выражения (10.1) можем определить коэффициент диффузии как скорость, с которой система способна при заданных условиях сделать нулевой разность концентраций. Знак “минус” в выражении означает, что поток атомов направлен из области с большей концентрацией в область с меньшей концентрацией. Для трехмерной задачи первое уравнение Фика имеет вид:

где - оператор Набла, который записывается .

В случае независимости коэффициента диффузии от концентрации легирующих частиц, применение закона сохранения вещества при диффузии в форме уравнения непрерывности для потока частиц позволяет перейти ко второму уравнению Фика, устанавливающему связь между концентрацией диффундирующих частиц в различных точках тела и временем диффузии:

Для трехмерного случая:

https://pandia.ru/text/80/099/images/image010_8.gif" width="88" height="48">, (10.4)

где - оператор Лапласа, который записывается .

Второй закон Фика, как закон сохранения вещества, можно записать в форме уравнения непрерывности:

. (10.5)

Размерность плотности потока вещества зависит от размерности концентрации..gif" width="219" height="48">.

Одним из основных параметров диффузии является коэффициент диффузии, вводимый как коэффициент пропорциональности между потоком и градиентом концентрации вещества в уравнении (10.1). В зависимости от условий проведения диффузионного опыта, различают несколько типов коэффициента диффузии.

1. Для описания взаимной диффузии при контакте двух образцов неограниченно растворимых один в одном, пользуются понятием коэффициента взаимной диффузии https://pandia.ru/text/80/099/images/image017_4.gif" width="21 height=25" height="25">, равным коэффициенту взаимной диффузии, если собственные коэффициенты диффузии компонентов равны между собой, т. е..gif" width="17" height="19 src="> и ).

3. Кроме того, подвижность - того компонента сплава может быть охарактеризована порциальными коэффициентами диффузии , которые вводятся следующим образом:

. (10.6)

Порциальные коэффициенты можно определить как для собственной, так и для взаимной диффузии. Все введенные до сих пор коэффициенты являются коэффициентами гитеродиффузии (химической диффузии), т. е. такой диффузии, которая имеет место при наличии только градиента концентрации.

Диффузия в реальных кристаллах происходит вследствие четырех основных механизмов:

1. Для идеальных кристаллов процесс диффузии предполагает простой обмен местами между соседними атомами вещества. В этом случае необходимо затратить значительную энергию (порядка энергии связи между соседними атомами решетки).

2. Для примесей внедрения характерно перемещение атомов по междоузлиям из-за наличия в системе некоторой концентрации дефектов.

3. При вакансионном механизме диффузии один из соседних атомов занимает близлежащую вакансию. Вакансии могут образовываться вследствие того, что некоторые атомы, совершающие тепловые колебания около положения равновесия, могут иметь энергию, значительно превышающую среднюю энергию связи. Такие атомы уходят из узлов решетки в междуузельное пространство, образуя вакансию. Такая вакансия перемещается в кристалле путем последовательного заполнения ее другими атомами.

4. Возможна также диффузия по междоузлиям путем вытеснения, когда атом выталкивает одного из ближайших соседей в междоузлие, а сам занимает его место в решетке.

Таким образом, мы видим, что в твердых телах благодаря тепловому движению происходит непрерывное перемешивание частиц..gif" width="120" height="52">, (10.7)

где - энергия активации диффузии; - постоянная, равная по порядку величины периоду собственных колебаний атомов в узлах решетки https://pandia.ru/text/80/099/images/image029_2.gif" width="109" height="25 src=">, где - энергия активации при https://pandia.ru/text/80/099/images/image032_1.gif" width="15" height="20"> зависит от характера колебаний атомов.

В большинстве случаев коэффициент диффузии в твердых телах увеличивается с ростом температуры по закону, имеющему вид уравнения Аррениуса:

, (10.8)

где - предэкспоненциальный множитель (фактор), численно равный коэффициенту диффузии при бесконечно большой температуре.

Процессы взаимной диффузии в поликристаллических пленках металлов приводят к образованию интерметаллидов. При этом можно выделить следующие изменения их свойств:

1. Образуются металлические слои, структура которых имеет большое количество дефектов, через которые возможна диффузия примесей и газов.

2. Электронные характеристики пленок металлов из-за образования твердых растворов металлов и соединений изменяются.

3. Меняется толщина и состав переходного слоя.

4. Возможно развитие неоднородностей в слоях металлов и в переходном слое из-за неравномерности взаимной диффузии металлов через границу раздела.

Отмеченные выше процессы приводят к деградации электрических параметров и зависят от количества продиффундированного в структуру вещества. Поэтому особенно важно уметь находить зависимости распределения концентрации диффундирующих примесей в структурах от времени и температуры процесса диффузии. Это можно сделать, решив второе уравнение Фика или уравнение диффузии.

Уравнение диффузии представляет собой дифференциальное уравнение в частных производных и для его решения необходимо сформулировать начальные и граничные условия, которым должна удовлетворять концентрация и первоначальное распределение диффундирующего вещества. Эти условия определяют на основе анализа конкретной ситуации, в которой происходит процесс диффузии. Здесь важно отметить, что внутри твердого тела концентрация является непрерывной функцией координат и времени, а ее первая производная по времени и первая и вторая производные по координатам , и DIV_ADBLOCK165">

Начальное распределение концентрации может быть произвольным, но чаще всего эта функция постоянна либо равна нулю. Что касается граничных условий (условий на поверхности), то обычно в задачах диффузии задана либо концентрация на поверхности , либо поток https://pandia.ru/text/80/099/images/image042.gif" width="45" height="20"> переходы, глубина которых контролируется с точностью до долей микрометра.

Контрольные вопросы

1. Что такое диффузия?

2. Как записывается первое уравнение Фика?

3. Как записывается второе уравнение Фика?

4. Что такое коэффициент диффузии?

5. Какие различают типы коэффициентов диффузии?

6. Как записывается зависимость изменения коэффициента диффузии от температуры в твердом теле?

7. Как процессы взаимной диффузии и образование при этом интерметаллидов изменяют свойства пленок металлов?

8. Как можно задавать начальное распределение концентрации и граничные условия (условия на поверхности) при решении уравнения диффузии?