Как найти центр сложной фигуры. Способы определения координат центра тяжести

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3)Σx i ; y c =(1/3)Σy i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

Площади:

Рис. 6.5.
Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

Что называется центром параллельных сил?

Как определяются координаты центра параллельных сил?

Как определить центр параллельных сил, равнодействующая которых равна нулю?

Каким свойством обладает центр параллельных сил?

По каким формулам вычисляются координаты центра параллельных сил?

Что называется центром тяжести тела?

Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

Что называют статическим моментом площади?

Приведите пример тела, центр тяжести которого расположен вне тела.

Как используются свойства симметрии при определении центров тяжести тел?

В чем состоит сущность способа отрицательных весов?

Где расположен центр тяжести дуги окружности?

Каким графическим построением можно найти центр тяжести треугольника?

Запишите формулу, определяющую центр тяжести кругового сектора.

Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Перед тем, как найти центр тяжести простых фигур, таких которые обладают прямоугольной, круглой, шарообразной или цилиндрической, а также квадратной формой, необходимо знать, в какой точке находится центр симметрии конкретной фигуру. Поскольку в данных случаях, центр тяжести будет совпадать с центром симметрии.

Центр тяжести однородного стержня располагается в его геометрическом центре. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольного параллелепипеда.

Центр тяжести неоднородных тел

Чтобы найти координаты центра тяжести, как и сам центр тяжести неоднородного тела, необходимо разобраться, на каком отрезке данного тела располагается точка, в которой пересекаются все силы тяжести, действующие на фигуру, если ее переворачивать. На практике для нахождения такой точки подвешивают тело на нить, постепенно меняя точки прикрепления нити к телу. В том случае, когда тело находится в равновесии, то центр тяжести тела будет лежать на линии, которая совпадает с линией нити. В противном случае сила тяжести приводит тело в движение.

Возьмите карандаш и линейку, начертите вертикальные прямые, которые визуально будут совпадать с нитевыми направлениями (нити, закрепляемые в различных точках тела). Если форма тела достаточно сложная, то проведите несколько линий, которые будут пересекаться в одной точке. Она и станет центром тяжести для тела, над которым вы производили опыт.

Центр тяжести треугольника

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника.

Если перед вами стоит задача, касающаяся того, как найти центр тяжести тела в форме равностороннего треугольника, то необходимо из каждой вершины провести высоту с помощью прямоугольной линейки. Центр тяжести в равностороннем треугольнике будет находиться на пересечении высот, медиан и биссектрис, поскольку одни и те же отрезки одновременно являются высотами, медианами и биссектрисами.

Координаты центра тяжести треугольника

Перед тем, как найти центр тяжести треугольника и его координаты, рассмотрим подробнее саму фигуру. Это однородная треугольная пластина, с вершинами А, В, С и соответственно, координатами: для вершины А - x1 и y1; для вершины В - x2 и y2; для вершины С - x3 и y3. При нахождении координат центра тяжести мы не будем учитывать толщину треугольной пластины. На рисунке ясно видно, что центр тяжести треугольника обозначен буквой Е – для его нахождения мы провели три медианы, на пересечении которых и поставили точку Е. Она имеет свои координаты: xE и yE.

Один конец медианы, проведенной из вершины А к отрезку В, обладает координатами x 1 , y 1 , (это точка А), а вторые координаты медианы получаем, исходя из того, что точка D (второй конец медианы) стоит посередине отрезка BC. Концы данного отрезка обладают известными нам координатами: B(x 2 , y 2) и C(x 3 , y 3). Координаты точки D обозначаем xD и yD . Исходя из следующих формул:

х=(Х1+Х2)/2; у=(У1+У2)/2

Определяем координаты середины отрезка. Получим следующий результат:

хd=(Х2+Х3)/2; уd=(У2+У3)/2;

D *((Х2+Х3)/2 , (У2+У3)/2).

Мы знаем, какие координаты характерны для концов отрезка АД. Также нам известны координаты точки Е, то есть, центра тяжести треугольной пластины. Также мы знаем, что центр тяжести расположен посередине отрезка АД. Теперь, применяя формулы и известные нам данные, мы можем найти координаты центра тяжести.

Таким образом, можно найти координаты центра тяжести треугольника, вернее, координаты центра тяжести треугольной пластины, учитывая то, что ее толщина нам неизвестна. Они равны среднему арифметическому однородных координат вершин треугольной пластины.

6.1. Общие сведения

Центр параллельных сил
Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


Рис.6.2

Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

Отсюда находим координату центра параллельных сил zc :

Для определения координаты xc составим выражение момента сил относительно оси Oz .

Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

6.2. Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
Точка С в данном случае носит название центра тяжести площади .
Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

6.3. Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


Рис.6.3

Ответ: x c =17.0см; y c =18.0см.

3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


Рис.6.4

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


Рис. 6.5

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
Согласно формуле для центра тяжести линии:

6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



Рис.6.6

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

6.4. Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

Таблица 6.1

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где α - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где α - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Инструкция

Попробуйте определить центр тяжести плоской фигуры опытным путем. Возьмите новый незаточенный карандаш, поставьте его вертикально. Сверху на него поместите плоскую фигуру. Отметьте на фигуре точку, в которой она устойчиво держится на карандаше. Это и будет центр тяжести вашей фигуры . Вместо карандаша использовать просто вытянутый вверх указательный палец. Но это , ведь надо добиться того, чтобы палец стоял ровно, не раскачивался и не дрожал.

Для демонстрации того, что полученная точка и есть центр масс, проделайте в ней иголкой дырочку. Проденьте в отверстие нитку, на одном из концов завяжите узелок − так, чтобы нитка не выскакивала. Держась за другой конец нитки, подвесьте тело на ней. Если центр тяжести верно, фигура расположится ровно, параллельно полу. Ее бока не будут раскачиваться.

Найдите центр тяжести фигуры геометрическим путем. Если у вас дан треугольник, постройте в нем . Эти отрезки соединяют вершины треугольника с серединой противоположной стороны. Точка станет центром масс треугольника. Чтобы найти срединную точку стороны, можно даже сложить фигуру пополам, но учтите, что при этом нарушится однородность фигуры .

Сравните результаты, полученные геометрическим и опытным путем. Сделайте о ходе эксперимента. Небольшие погрешности считаются нормой. Объясняются они неидеальностью фигуры , неточностью приборов, человеческим фактором (мелкими огрехами в работе, несовершенством человеческого глаза и т.д.).

Источники:

  • Вычисление координат центра тяжести плоской фигуры

Центр фигуры можно найти несколькими способами, смотря какие данные о ней уже известны. Стоит разобрать нахождение центра окружности, которая является совокупностью точек, располагающихся на равном расстоянии от центра, так как эта фигура - одна из наиболее распространенных.

Вам понадобится

  • - угольник;
  • - линейка.

Инструкция

Простейший способ найти центр окружности – согнуть листок бумаги, на котором она начерчена, убедившись, глядя на просвет, что она сложилась точно пополам. Затем согните лист перпендикулярно первому сгибу. Так вы получите диаметры, точка пересечения которых и есть центр фигуры.

Допустим, рассматриваемую фигуру начертили на твердой, несгибаемой поверхности либо это отдельная деталь, которая также не поддается сгибу. Чтобы найти центр окружности в этом случае, вам нужна линейка.

Диаметр является самым длинным отрезком, соединяющим 2 точки окружности. Как известно, проходит он через центр, поэтому задача нахождения центра окружности сводится к нахождению диаметра и его середины.

Наложите линейку на окружность, после чего зафиксируйте в любой точке фигуры нулевую отметку. Приложите линейку к окружности, получив секущую, а затем двигайте по направлению к центру фигуры. Длина секущей будет возрастать, пока не дойдет до пиковой точки. Вы получите диаметр, а найдя его середину, найдете и центр окружности.

Центр описанной окружности для любого треугольника располагается на пересечении срединных перпендикуляров. В случае, если треугольник прямоугольный, ее центр всегда будет совпадать с серединой гипотенузы. То есть решение кроется в построении внутри окружности прямоугольного треугольника с вершинами, лежащими на окружности.

Трафаретом для прямого угла могут послужить школьный или строительный угольник, линейка или даже лист бумаги/картона. Поместите в любую точку окружности вершину прямого угла, сделайте отметки в тех местах, где стороны угла пересекают границу окружности, соедините их. У вас получился диаметр – гипотенуза.

Таким же способом найдите еще один диаметр, место пересечения двух таких отрезков и будет центром окружности.

Видео по теме

Еще в школе на уроках физики мы впервые знакомимся с таким понятием, как центр тяжести. Задача не из легких, но хорошо объяснима и понятна. Не только юному физику понадобится знать определение центра тяжести. И если вы столкнулись с данной задачей, стоит прибегнуть к подсказкам и напоминаниям, дабы обновить свою память.

Инструкция

Проштудировав учебники физики, механики, словари или энциклопедии, вы наткнетесь на центра тяжести или как называют центр масс.

В разных науках немного разные определения, но суть, фактически, не теряется. Центр тяжести всегда находится в центре симметрии тела. Для более наглядного понятия «центр тяжести (или по другому называют центр масс) - это , что неизменно связанна с твердым телом. Через неё проходит равнодействующая сил тяжести, действующие на частицу данного тела при любом его положение».

Если центр тяжести твердого тела - это точка, значит она должна иметь свои координаты.

Для определения важно знать координаты по x, y, z, i-той части тела и вес, обозначающийся буквой - p.

Рассмотрим пример задачи.

Даны два тела различных масс m1 и m2,на которые действуют разные весовые силы (как изображено на рисунке). Записав веса:

P1= m1*g, Р2= m2*g;

Центр тяжести находится между двумя массами. И если все тело подвесить в т.О, наступит значение равновесие, то есть эти перестанут перевешивать друг друга.

Разнообразные геометрические фигуры имеют физические и расчеты по поводу центра тяжести. К каждому свой подход и свой метод.

Рассматривая диск, уточняем, что центр тяжести находится внутри него, точнее диаметров (как показано на рисунке в т.С - точка пересечение диаметров). Таким же способом находят центры параллелепипеда или однородного шара.

Представленный диск и два тела с массами m1 и m2 - однородной массы и правильной формы. Здесь можно отметить, что искомый нами центр тяжести находится внутри этих предметов. Однако, в телах с неоднородной массой и неправильной формы центр может находится за . Чувствуете сами, что задача уже становится сложнее.

Мода на «женщин, которые похожи на мальчиков» уже давно прошла, но многие представительницы слабого пола хотят до сих пор обладать плоской попой. Хотя на сегодняшний день «в моде» демонстрировать всю цветущую сексуальность, гармоничное, красивое и тренированное тело. Ведь именно в таком случае, красивая попка является непременной составляющей не только женской, но также и мужской красоты.

Инструкция

Для того, чтобы попу плоской, необходимо выполнять следующие . 1 упражнение "Поднимание ног".Это упражнение можете в нескольких вариантах.Встаньте на четвереньки - в исходное положение, а затем делайте поочередно подъемы каждой ноги, чтобы бедро было параллельно полу. Зафиксируйте ногу в прижатом положении к и производите пружинящие движения наверх. При этом, обратите внимание на фиксацию вашей ноги в голеностопном, а также коленном суставе, старайтесь данное положение не изменять.

2 упражнение "Поднятие таза".Лягте на , руки расположите параллельно телу, а ноги согните в коленях. После этого приподнимите таз от пола, сильно напрягая ягодицы. При этом верхняя часть и руки от пола не должны отрываться.В таком же положении сделайте пружинистых движений наверх.

3 упражнение "Поднятие ".Встаньте, ноги расположите на ширине плеч. Попеременно поднимайте и опускайте по одному колену как можно выше. При поднятии колена старайтесь как можно дольше удержаться, не двигаясь, на одной ноге.Этим упражнением очень хорошо прорабатывается зона, которая находится чуть выше попы.

4 упражнение "Приседание с отведением таза".Встаньте так, чтобы ноги были шире плеч, а стопы параллельно им. В этом случае левая нога должна быть немного позади правой. Затем присядьте, опираясь на левую ногу и отводя таз назад. При этом руки протяните перед левой стопой, спину держите прямой. После этого встаньте, перенесите весь вес на правую ногу, левую отведите назад и поднимите руки над головой.Данное упражнение повторите 10 раз, затем смените ногу.

5 упражнение "Выпады колесом".Сделайте выпад вперед, начиная с левой ноги, чуть разверните стопу по часовой стрелке. Затем наклонитесь вперед от бедра. При этом широко разведите руки, словно хотите сделать колесо. Задержитесь на несколько секунд в этом положении, затем встаньте, сохранив положение правой ноги. Левой совершите шаг влево и разверните наружу мысок. Присядьте и наклонитесь влево.

Видео по теме

Источники:

  • плоские попы в 2019

В обыденном смысле центр тяжести воспринимают как точку, к которой можно приложить равнодействующую всех сил, действующих на тело. Самый простой пример - это детские качели в виде обычной доски. Без всяких вычислений любой ребенок подберет опору доски так, чтобы уравновесить (а может, и перевесить) на качелях тяжелого мужчину. В случае сложных тел и сечений без точных расчетов и соответствующих формул не обойтись. Даже если получаются громоздкие выражения, главное - не пугаться их, а помнить, что исходно речь идет о практически элементарной задаче.

Инструкция

Рассмотрите простейший рычаг (см. рис 1), находящийся в положении равновесия. Расположите на горизонтальной оси с абсциссой х₁₂ и поместите на краях материальные точки масс m₁ и m₂. Считайте их координаты по оси 0х известными и равными х₁ и х₂. Рычаг находится в положении равновесия, если моменты сил веса Р₁=m₁g и P₂=m₂g равны. Момент равен произведению силы на ее плечо, которое можно найти как длину перпендикуляра опущенного из точки приложения силы на вертикаль х=х₁₂. Поэтому, в соответствии с рисунком 1, m₁gℓ₁= m₂gℓ₂, ℓ₁=х₁₂-х₁, ℓ₂=х₂-х₁₂. Тогда m₁(х₁₂-х₁)=m₂(х₂-х₁₂). Решите это уравнение и получите х₁₂=(m₁x₁+m₂x₂)/(m₁+m₂).

Для выяснения ординаты y₁₂ примените те же самые рассуждения и выкладки, как и на шаге 1. По-прежнему следуйте иллюстрации, приведенной на рисунке 1, где m₁gh₁= m₂gh₂, h₁=y₁₂-y₁, h₂=y₂-y₁₂. Тогда m₁(y₁₂-y₁)=m₂(y₂-y₁₂). Результат - у₁₂=(m₁у₁+m₂у₂)/(m₁+m₂). Далее считайте, что вместо системы из двух точек имеется одна точка М₁₂(x12,у12) общей массы (m₁+m₂).

К системе из двух точек добавьте еще одну массу (m₃) с координатами (х₃, у₃). При вычислении следует по-прежнему считать, что имеете дело с двумя точками, где вторая из них имеет массу (m₁+m₂) и координаты (x12,у12). Повторяя уже для этих двух точек все действия шагов 1 и 2, придете к центра трех точек x₁₂₃=(m₁x₁+m₂x₂+m₃x₃)/(m₁+m₂+m₃), у₁₂₃=(m₁у₁+m₂у₂+m₃y₃)/(m₁+m₂+m₃). Далее добавляйте четвертую, пятую и так далее точки. После многократного повторения все той же процедуры убедитесь, что для системы n точек координаты центра тяжести вычисляются по формуле (см. рис. 2). Отметьте для себя тот факт, что в процессе работы ускорение свободного падения g сокращалось. Поэтому координаты центра масс и тяжести совпадают.

Представьте себе, что в рассматриваемом сечении расположена некоторая область D, поверхностная плотность которой ρ=1. Сверху и снизу фигура ограничена графиками кривых у=φ(х) и у=ψ(х), х є [а,b]. Разбейте область D вертикалями x=x₍i-1₎, x=x₍i₎ (i=1,2,…,n) на тонкие полоски, такие, что их можно приблизительно считать прямоугольниками с основаниями ∆хi (см. рис. 3). При этом середину отрезка ∆хi считайте положите совпадающим с абсциссой центра масс ξi=(1/2). Высоту прямоугольника считайте приблизительно равной [φ(ξi)-ψ(ξi)]. Тогда ордината центра масс элементарной площади ηi=(1/2)[φ(ξi)+ψ(ξi)].

В силу равномерного распределения плотности считайте, что центр масс полоски совпадет с ее геометрическим центром. Соответствующая элементарная масса ∆mi=ρ[φ(ξi)-ψ(ξi)]∆хi=[φ(ξi)-ψ(ξi)]∆хi сосредоточена в точке (ξi,ηi). Наступил момент обратного перехода от массы, представленной в дискретной форме, к непрерывной. В соответствии с формулами вычисления координат (см. рис. 2) центра тяжести образуются интегральные суммы, проиллюстрированные на рисунке 4а. При предельном переходе при ∆xi→0 (ξi→xi) от сумм к определенным интегралам, получите окончательный ответ (рис. 4b). В ответе масса отсутствует. Равенство S=M следует понимать лишь как количественное. Размерности здесь отличны друг от друга.

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .