Порядок квадратной матрицы. Матрицы. Виды матриц. Основные термины

Квадратную матрицу -го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, будем называть единичной матрицей и обозначать через или просто . Название «единичная матрица» связано со следующим свойством матрицы : для любой прямоугольной матрицы

имеют место равенства

.

Очевидно,

Пусть- квадратная матрица. Тогда степень матрицы определяется обычным образом:

Из сочетательного свойства умножения матриц следует:

Здесь , - произвольные целые неотрицательные числа.

Рассмотрим многочлен (целую рациональную функцию) с коэффициентами из поля :

Тогда под будем понимать матрицу

Так определяется многочлен от матрицы.

Пусть многочлен равен произведению многочленов и :

.

Многочлен получается из и путем почленного перемножения и приведения подобных членов. При этом используется правило перемножения степеней: . Так как все эти действия правомерны и при замене скалярной величины на матрицу , то

Отсюда, в частности,

т. е. два многочлена от одной и той же матрицы всегда перестановочны между собой.

Условимся -й наддиагональю (поддиагональю) в прямоугольной матрице называть ряд элементов, у которых (соответственно). Обозначим через квадратную матрицу -го порядка, у которой элементы первой наддиагонали равны единице, а все остальные элементы равны нулю. Тогда

, и т. д.;

В силу этих равенств если:

Многочлен относительно , то

.

Аналогично, если - квадратная матрица -го порядка, у которой все элементы первой поддиагонали равны единице, а все остальные, нулю, то

.

Предлагаем читателю проверить следующие свойства матриц и:

1° В результате умножения произвольной -матрицы слева на матрицу (матрицу ) -го порядка все строки матрицы подминаются (опускаются) на одно место вверх (вниз), первая (последняя) строка матрицы исчезает, а последняя (первая) строка произведения заполняется нулями. Так, например,

,

.

2° В результате умножения произвольной -матрицы справа на матрицу -го порядка все столбцы матрицы сдвигаются вправо (влево) на одно место, при этом последний (первый) столбец матрицы исчезает, а первый (последний) столбец произведения заполняется нулями. Так, например,

.

.

2. Квадратную матрицу будем называть особенной, если . В противном случае квадратная матрица называется неособенной.

Пусть - неособенная матрица (). Рассмотрим линейное преобразование с матрицей коэффициентов

Рассматривая равенства (23) как уравнения относительно и замечая, что определитель системы уравнений (23) по условию отличен от нуля, мы можем однозначно по известным формулам выразить через :

. (24)

Мы получили «обратное» преобразование для (23). Матрицу коэффициентов этого преобразования

мы назовем обратной матрицей для матрицы . Из (24) легко усмотреть, что

, (25)

где - алгебраическое дополнение (адъюнкта) элемента в определителе .

Так, например, если

и ,

.

Образуя составное преобразование из данного преобразования (23) и обратного (24) в одном и в другом порядке, мы в обоих случаях получаем тождественное преобразование (с единичной матрицей коэффициентов); поэтому

. (26)

В справедливости равенств (26) можно убедиться и непосредственным перемножением матриц и . Действительно, в силу (25)

.

Аналогично

.

Нетрудно видеть, что матричные уравнения

никаких других решений, кроме решения не имеют. Действительно, умножая обе части первого уравнения слева, а второго - справа на и используя сочетательное свойство произведения матриц, а также равенства (26), мы в обоих случаях получим:

Этим же способом доказывается, что каждое из матричных уравнений

где и - прямоугольные матрицы равных размеров, - квадратная матрица соответствующего размера, имеет одно и только одно решение:

И соответственно (29)

Матрицы (29) являются как бы «левым» и «правым» частными от «деления» матрицы на матрицу . Из (28) и (29) следует соответственно (см. стр. 22) и , т. е. . Сопоставляя с (28), имеем:

При умножении прямоугольной матрицы слева или справа на неособенную матрицу ранг исходной матрицы не изменяется.

Заметим еще, что из (26) вытекает , т.е.

Для произведения двух неособенных матриц имеем:

. (30)

3. Все матрицы -го порядка образуют кольцо с единичным элементом . Поскольку в этом кольце определена операция умножения на число из поля и существует базис из линейно независимых матриц, через которые линейно выражаются все матрицы -го порядка, то кольцо матриц -го порядка является алгеброй.

Все квадратные матрицы -го порядка образуют коммутативную группу относительно операции сложения. Все неособенные матрицы -го порядка образуют (некоммутативную) группу относительно операции умножения.

Квадратная матрица называется верхней треугольной (нижней треугольной), если равны нулю все элементы матрицы, расположенные под главной диагональю (над главной диагональю):

, .

Диагональная матрица является частным случаем как верхней, так и нижней треугольной матрицы.

Так как определитель треугольной матрицы равен произведению ее диагональных элементов, то треугольная (и, в частности, диагональная) матрица является неособенной только тогда, когда все ее диагональные элементы отличны от нуля.

Легко проверить, что сумма и произведение двух диагональных (верхних треугольных, нижних треугольных) матриц есть диагональная (соответственно верхняя треугольная, нижняя треугольная) матрица и что обратная матрица для неособенной диагональной (верхней треугольной, нижней треугольной) матрицы является матрицей того же типа. Поэтому

1° Все диагональные, все верхние треугольные, все нижние треугольные матрицы -го порядка образуют три коммутативные группы относительно операции сложения.

2° Все неособенные диагональные матрицы образуют коммутативную группу относительно умножения.

3° Все неособенные верхние (нижние) треугольные матрицы составляют группу (некоммутативную) относительно умножения

4. В заключение этого параграфа укажем на две важные операции над матрицами - транспонирование матрицы и переход к сопряженной матрице., то матрицы.

Если квадратная матрица совпадает со своей транспонированной () то такая матрица называется симметрической. Если же квадратная матрица совпадает со своей сопряженной (), то она называется эрмитовой. В симметрической матрице элементы, симметрично расположенные относительно главной диагонали, равны, а в эрмитовой они комплексно сопряжены между собой. Диагональные элементы эрмитовой матрицы всегда вещественны. Заметим, что произведение двух симметрических (эрмитовых) матриц, вообще говоря, не является симметрической (эрмитовой) матрицей. В силу 3° это имеет место только в том случае, когда данные две симметрические или эрмитовы матрицы перестановочны между собой.

Влечет за собой равенство .

Если квадратная матрица отличается множителем -1 от своей транспонированной () то такая матрица называется кососимметрической. В кососимметрической матрице любые два элемента, расположенные симметрично относительно главной диагонали, отличаются друг от друга множителем -1, а диагональные элементы равны нулю. Из 3° следует, что произведение двух перестановочных между собой кососимметрических матриц является симметрической матрицей.

Операции над матрицами и их свойства.

Понятие определителя второго и третьего порядков. Свойства определителей и их вычисление.

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

Глоссарий

Выучите определения следующих терминов :

Размерностью матрицы называется совокупность двух чисел, состоящая из числа её строк m и числа столбцов n.

Если m=n, то матрицу называют квадратной матрицей порядка n.

Операции над матрицами : транспонирование матрицы, умножение (деление) матрицы на число, сложение и вычитание, умножение матрицы на матрицу.

Переход от матрицы А к матрице А т, строками которой являются столбцы, а столбцами —строки матрицы А, называется транспонированием матрицы А.

Пример: А= , А т = .

Чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример: 2А= 2· = .

Суммой (разностью) матриц А и В одинаковой размерности называется матрица С=А В, элементы которой равны с ij = a ij b ij для всех i и j .

Пример: А = ; В = . А+В= = .

Произведением матрицы А m n на матрицу В n k называется матрица С m k , каждый элемент которой c ij равен сумме произведений элементов i-ой строки матрицы А на соответствующий элемент j-го столбца матрицы В:

c ij = a i1 · b 1j + a i2 ·b 2j +…+ a in ·b nj .

Чтобы можно было умножить матрицу на матрицу, они должны быть согласованными для умножения, а именно число столбцов в первой матрице должно быть равно числу строк во второй матрице.

Пример: А= и В = .

А·В—невозможно, т.к. они не согласованы.

В·А= . = = .

Свойства операции умножения матриц .

1. Если матрица А имеет размерность m n, а матрица В—размерность n k , то произведение А·В существует.

Произведение В·А может существовать, только когда m=k.

2.Умножение матриц не коммутативно, т.е. А·В не всегда равно В·А даже если определены оба произведения. Однако если соотношение А·В= В·А выполняется, то матрицы А и В называются перестановочными .

Пример . Вычислить .

Минором элемента называется определитель матрицы порядка, полученный вычёркиванием -ой строки -го столбца.

Алгебраическим дополнением элемента называется .

Теорема разложения Лапласа :

Детерминант квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример . Вычислить .

Решение. .

Свойства определителей n-го порядка :

1) Величина определителя не изменится, если строки и столбца поменять местами.

2) Если определитель содержит строку (столбец) из одних нулей, то он равен нулю.

3) При перестановке двух строк (столбцов) определитель меняет знак.

4) Определитель, имеющий две одинаковые строки (столбца), равен нулю.

5) Общий множитель элементов любой строки (столбца) можно вынести за знак определителя.

6) Если каждый элемент некоторой строки (столбца) представляет собой сумму двух слагаемых, то определитель равен сумме двух определителей, в каждом из которых все строки (столбцы), кроме упомянутой, такие же, как и в данном определителе, а в упомянутой строке (столбце) первого определителя стоят первые слагаемые, второго - вторые.

7) Если в определителе две строки (столбца) пропорциональны, то он равен нулю.

8) Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

9) Определители треугольных и диагональных матриц равны произведению элементов главной диагонали.

Метод накопления нулей вычисления определителей основан на свойствах определителей.

Пример . Вычислить .

Решение. Вычтем из первой строки удвоенную третью, далее используем теорему разложения по первому столбцу.

~ .

Контрольные вопросы (ОК-1, ОК-2, ОК-11,ПК-1):

1. Что называется определителем второго порядка?

2. Какие основные свойства определителей?

3. Что называется минором элемента?

4. Что называется алгебраическим дополнением элемента определителя?

5. Как разложить определитель третьего порядка по элементам какой-либо строки (столбца)?

6. Чему равна сумма произведений элементов какой-либо строки (или столбца), определителя по алгебраическим дополнениям соответствующих элементов другой строки (или столбца)?

7. В чём заключается правило треугольников?

8. Как вычисляются определители высших порядков способом понижения порядка

10. Какая матрица называется квадратной? Нулевой? Что такое матрица-строка, матрица-столбец?

11. Какие матрицы называются равными?

12. Дать определения операций сложения, умножения матриц, умно-жения матрицы на число

13. Каким условиям должны удовлетворять размеры матриц при сло-жении, умножении?

14. В чём заключаются свойства алгебраических операций: коммута-тивность, ассоциативность, дистрибутивность ? Какие из них выпол-няются для матриц при сложении, умножении, а какие нет?

15. Что такое обратная матрица? Для каких матриц она определена?

16. Сформулировать теорему о существовании и единственности обратной матрицы.

17. Сформулировать лемму о транспонировании произведения мат-риц.

Практические задания общие (ОК-1, ОК-2, ОК-11,ПК-1):

№1. Найти сумму и разность матриц А и В:

а)

б)

в)

№2. Выполните указанные действия:

в) Z= -11А+7В-4С+D

если

№3. Выполните указанные действия:

в)

№4. При помощи применения четырех способов вычисления определителя квадратной матрица, найти определители следующих матриц:

№5. Найти определителей n-ого порядка, по элементам столбца (строки):

а) б)

№6. Найти определитель матрицы, используя свойства определителей:

а) б)

Точки в пространстве, произведение Rv даёт другой вектор, который определяет положение точки после вращения. Если v - вектор-строка , такое же преобразование можно получить, используя vR T , где R T - транспонированная к R матрица.

Энциклопедичный YouTube

    1 / 5

    C# - Консоль - Олимпиада - Квадратная спираль

    Матрица: определение и основные понятия

    Где брать силы и вдохновения Подзарядка 4 квадратной матрицы

    Сумма и разность матриц, умножение матрицы на число

    Транспонована матриця / Транспонированная матрица

    Субтитры

Главная диагональ

Элементы a ii (i = 1, ..., n ) образуют главную диагональ квадратной матрицы. Эти элементы лежат на воображаемой прямой, проходящей из левого верхнего угла в правый нижний угол матрицы. Например, главная диагональ 4х4 матрицы на рисунке содержит элементы a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10.

Диагональ квадратной матрицы, проходящая через нижний левый и верхний правый углы, называется побочной .

Специальные виды

Название Пример с n = 3
Диагональная матрица [ a 11 0 0 0 a 22 0 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}}}
Нижняя треугольная матрица [ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\end{bmatrix}}}
Верхняя треугольная матрица [ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\end{bmatrix}}}

Диагональные и треугольные матрицы

Если все элементы вне главной диагонали нулевые, A называется диагональной . Если все элементы над (под) главной диагональю нулевые, A называется нижней (верхней) треугольной матрицей .

Единичная матрица

Q (x ) = x T Ax

принимает только положительные значения (соответственно, отрицательные значения или и те, и другие). Если квадратичная форма принимает только неотрицательные (соответственно, только неположительные) значения, симметричная матрица называется положительно полуопределённой (соответственно, отрицательно полуопределённой). Матрица будет неопределённой, если она ни положительно, ни отрицательно полуопределена.

Симметричная матрица положительно определена тогда и только тогда, когда все её собственные значения положительны. Таблица справа показывает два возможных случая для матриц 2×2.

Если использовать два различных вектора, получим билинейную форму , связанную с A :

B A (x , y ) = x T Ay .

Ортогональная матрица

Ортогональная матрица - это квадратная матрица с вещественными элементами, столбцы и строки которой являются ортогональными единичными векторами (т. е. ортонормальными). Можно также определить ортогональную матрицу как матрицу, обратная которой равна транспонированной:

A T = A − 1 , {\displaystyle A^{\mathrm {T} }=A^{-1},}

откуда вытекает

A T A = A A T = E {\displaystyle A^{T}A=AA^{T}=E} ,

Ортогональная матрица A всегда обратима (A −1 = A T), унитарна (A −1 = A *), и нормальна (A *A = AA *). Определитель любой ортонормальной матрицы равен либо +1, либо −1. В качестве линейного отображения любая ортонормальная матрица с определителем +1 является простым поворотом , в то время как любая любая ортонормальная матрица с определителем −1 является либо простым отражением , либо композицией отражения и поворота.

Операции

След

Определитель det(A ) или |A | квадратной матрицы A - это число, определяющее некоторые свойства матрицы. Матрица обратима тогда и только тогда , когда её определитель ненулевой.

Определители квадратных матриц.

Определитель матрицы – это число, характеризующее квадратную матрицу А и тесно связанное с решением систем линейных уравнений. Определитель матрицы А обозначается или . Любой квадратной матрице А порядка n ставится в соответствие по определенному закону вычисленное некоторое число, называемое определителем, или детерминантом, n-го порядка этой матрицы. Рассмотрим определители второго и третьего порядков.

Пусть дана матрица

,

тогда ее определитель второго порядка вычисляется по формуле

.

Пример. Вычислить определитель матрицы А:

Ответ: -10.

Определитель третьего порядка вычисляется по формуле

Пример. Вычислить определитель матрицы В

.

Ответ: 83.

Вычисление определителя n-го порядка производится на основании свойств определителя и следующей теоремы Лапласа: определитель равен сумме произведений элементов любой строки (столбца) матрицы на их алгебраические дополнения:

Алгебраическое дополнение элемента равно , где - минор элемента , получаемый путем вычеркивания в определителе i-ой строки и j-го столбца.

Минором порядка элемента матрицы А называется определитель матрицы (n-1)-го порядка, полученный из матрицы А вычеркиванием i-ой строки и j-го столбца.

Пример . Найти алгебраические дополнения всех элементов матрицы А:

.

Ответ: .

Пример . Вычислить определитель матрицы треугольной матрицы:

Ответ: -15.

Свойства определителей:

1. Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число , то ее определитель умножится на это число.

3. При транспонировании матрицы ее определитель не изменится.

4. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

5. Если квадратная матрица содержит две одинаковые строки (столбца), то ее определитель равен 0.

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

7. Сумма произведения элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0.

8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

9. Сумма произведений произвольных чисел на алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа .

10. Определитель произведения двух квадратных матриц равен произведению их определителей.

Обратная матрица.

Определение. Матрица называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

.

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка. Если определитель матрицы отличен от нуля, то такая квадратная матрица называется невырожденной.

Необходимое и достаточное условие существования обратной матрицы: Обратная матрица существует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Первый алгоритм вычисления обратной матрицы:

1. Находим определитель исходной матрицы. Если определитель не равен нулю, то исходная матрица невырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к А.

3. Находим алгебраические дополнения элементов транспонированной матрицы и составляем из них присоединенную матрицу .

4. Вычисляем обратную матрицу по формуле: .

5. Проверяем правильность вычисления обратной матрицы, исходя из ее определения .

Пример.

.

Ответ: .

Второй алгоритм вычисления обратной матрицы:

Обратную матрицу можно вычислить на основании следующих элементарных преобразований над строками матрицы:

Перемена местами двух строк;

Умножение строки матрицы на любое число, отличное от нуля;

Прибавление к одной строке матрицы другой строки, умноженной на любое число, отличное от нуля.

Для того чтобы вычислить обратную матрицу для матрицы А, необходимо составить матрицу , затем путем элементарных преобразований привести матрицу А к виду единичной матрицы Е, тогда на месте единичной матрицы получим матрицу .

Пример. Вычислить обратную матрицу для матрицы А:

.

Составляем матрицу В вида:

.

Элемент = 1 и первую строку, содержащую данный элемент, назовем направляющими. Осуществим элементарные преобразования, в результате которых первый столбец преобразуется в единичный столбец с единицей в первой строке. Для этого ко второй и третьей строкам прибавим первую строку, соответственно умноженную на 1 и -2. В результате этих преобразований получим:

.

Окончательно получим

.

Откуда .

Ранг матрицы. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Ранг матрицы А обозначается rang(A) или r(A).

Из определения следует: а) ранг матрицы не превосходит меньшего из ее размеров, т.е. r(А) меньше или равен минимальному из чисел m или n; б) r(A)=0 тогда и только тогда, когда все элементы матрицы А равны нулю; в) для квадратной матрицы n-го порядка r(A)=n тогда и только тогда, когда матрица А - невырожденная.

Пример : вычислить ранги матриц:

.

Ответ: r(A)=1. Ответ: r(A)=2.

Назовем элементарными преобразованиями матрицы следующие:

1) Отбрасывание нулевой строки (столбца).

2) Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.

3) Изменение порядка строк (столбцов) матрицы.

4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5) Транспонирование матрицы.

Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Примеры : Вычислить матрицу , где

; ;

Ответ: .

Пример : Вычислить матрицу , где

; ; ; E – единичная матрица.

Ответ: .

Пример : Вычислить определитель матрицы

.

Ответ : 160.

Пример : Определить, имеет ли матрица А обратную, и если имеет, то вычислить ее:

.

Ответ : .

Пример : Найти ранг матрицы

.

Ответ : 2.

2.4.2. Системы линейных уравнений.

Система m линейных уравнений с n переменными имеет вид:

,

где , - произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений. Решением системы уравнений называется такая совокупность n чисел (), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений. Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Теорема Крамера: Пусть - определитель матрицы А, составленной из коэффициентов при переменных “х”, а - определитель матрицы, получаемой из матрицы А заменой j-го столбца этой матрицы столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам: (j=1, 2, …, n). Эти уравнения получили названия формул Крамера.

Пример. Решить системы уравнений по формулам Крамера:

Ответы : (4, 2, 1). (1, 2, 3) (1, -2, 0)

Метод Гаусса – метод последовательного исключения переменных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних по номеру переменных, находятся все остальные переменные.

Пример : Решить системы уравнений методом Гаусса.

Ответы : (1, 1, 1). (1, -1, 2, 0). (1, 1, 1).

Для совместных систем линейных уравнений верны следующие утверждения:

· если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система уравнений имеет единственное решение;

· если ранг матрицы совместной системы меньше числа переменных, т.е. r

2.4.3. Технология выполнения операций над матрицами в среде EXCEL.

Рассмотрим некоторые аспекты работы с табличным процессором Excel, которые позволяют упростить расчеты, необходимые для решения оптимизационных задач. Табличный процессор – это программный продукт, предназначенный для автоматизации обработки данных табличной формы.

Работа с формулами. В программах электронных таблиц формулы служат для выполнения множества разнообразных расчетов. С помощью Excel можно быстро создать формулу. Формула состоит из трех основных частей:

Знак равенства;

Операторы.

Использование в формулах функций . Чтобы облегчить ввод формул, можно воспользоваться функциями Excel. Функции – это встроенные в Excel формулы. Для активизации той или иной формулы следует нажать кнопки Вставка , Функции. В появившемся окне Мастер функций слева содержится перечень типов функций. После выбора типа справа будет помещен список самих функций. Выбор функций осуществляется щелчком клавиши мыши на соответствующем названии.

При выполнении операций над матрицами, решении систем линейных уравнений, решении оптимизационных задач можно применять следующие функции Excel:

МУМНОЖ - умножение матриц;

ТРАНСП - транспонирование матрицы;

МОПРЕД - вычисление определителя матрицы;

МОБР - вычисление обратной матрицы.

Кнопка находится на панели инструментов. Функции для выполнения операций с матрицами находятся в категории Математические .

Умножение матриц с помощью функции МУМНОЖ . Функция МУМНОЖ возвращает произведение матриц (матрицы хранятся в массивах 1 и 2). Результатом является массив с таким же числом строк, как массив 1, и с таким же числом столбцов, как массив 2.

Пример. Найти произведение двух матриц А и В в среде Excel (см. рис 2.9):

; .

Введите матрицы А в ячейки А2:C3 и В в ячейки E2:F4.

Выделите диапазон ячеек для результата умножения – H2:I2.

Введите формулу умножения матриц =МУМНОЖ(A2:C3, E2:F4).

Нажмите клавиши CTRL+SHIFT+ENTER.

Вычисления обратной матрицы с помощью функции МОБР .

Функция МОБР возвращает обратную матрицу для матрицы, хранящейся в массиве. Синтаксис: МОБР(массив). На рис. 2.10 приведено решение примера в среде Excel.

Пример. Найти матрицу, обратную к данной:

.

Рисунок 2.9. Исходные данные для умножения матриц.

Рисунок 2.10. Исходные данные для вычисления обратной матрицы.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.