Теорема пуанкаре простыми словами. Что же доказал Григорий Перельман

  1. Немного озадачился этой теоремой......кстати интересно....

    Доказана Гипотеза Пуанкаре - одна из семи Задач Тысячелетия...
    Задачи Тысячелетия - Millennium Prize Problems - составляют семь математических проблем, охарактеризованных как «важные классические задачи, решение которых не найдено вот уже в течение многих десятков лет» . За решение каждой из этих проблем институтом Клэя предложен приз в 1 000 000 долларов США.

    Семь Задач Тысячелетия:

    1. Равенство классов P и NP
    2. Гипотеза Ходжа
    3. Гипотеза Пуанкаре - доказана!
    4. Гипотеза Римана
    5. Теория Янга - Миллса
    6. Существование и гладкость решений уравнений Навье - Стокса
    7. Гипотеза Берча и Свиннертона-Дайера
    Обобщённая гипотеза Пуанкаре утверждает, что:
    Для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
    Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

    Гипотеза сформулирована французским математиком Пуанкаре в 1904 году. Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики, попытка понять какой формы может быть Вселенная, к ней очень трудно подобраться».

    Многие талантливые и одаренные математики многие годы пытались доказать данную гипотезу, найти решение. Сделал это Григорий Перельман - разрешив теорему Пуанкаре, встал в один ряд с величайшими гениями прошлого и настоящего. И вот тогда все ахнули, как понимающие, так и непосвященные...

    В 2002 году: Григорий Перельман опубликовал свою первую статью по проблеме теоремы Пуанкаре, в правильности своих доказательств, наверняка, он сомневался и сам. Гении всегда сомневаются, посредственности - нет. И долгие, мучительные четыре года он ждал главного - признания правильности своих доказательств. Как видим, его коллеги- оппоненты не спешили. Вердикт подписали три ведущих математика мира - Тьян, Кляйнер и Лотт. Формулировка свидетельствует, что они не поступились ни каплей своей научной репутации. Смысл ее - «...несмотря на некоторые незначительные неточности и даже мелкие ошибки, доказательства Перельмана корректны...»
    И так, в 2006 году международное математическое сообщество признало - Гипотеза Пуанкаре - доказана!


    Медаль Филдса

    Григорию Перельману за решение гипотезы Пуанкаре была присуждена международная премия «Медаль Филдса», однако он отказался от неё.

    18 марта 2010 года Математический институт Клэя объявил о присуждении Григорию Перельману премии в размере 1 миллион долларов США за доказательство гипотезы Пуанкаре. Это стало первым в истории присуждением премии за решение одной из Проблем тысячелетия.

    Математик не приехал на церемонию врученияпремии института Клэя в Париж, и не сообщил, решил ли он ее принять. В символическом виде награда была отдана французскому математику российского происхождения Михаилу Громову и Франсуазе Пуанкаре - внучке создателя гипотезы. При этом организатор и учредитель премии, Джеймс Карлсон, сказал, что он готов ждать решения Перельмана «столько, сколько потребуется». 1 июля 2010 года математик окончательно отказался от премии в 1 миллион долларов и осенью Математический институт имени Клэя объявит о том, как именно они будут потрачены на благо математики.

    Мир ахнул снова - питерский Гений отказался от всех мирских почестей. В отличии от Григория Перельмана, многие бы от миллиона не отказались, но они и не решили теорему Пуанкаре. А он думал только о ней. Бог целует в темечко тех, кто думает о нем, а не о Мамоне.

    Кто с завистью, кто с недоумением пожимают плечами, обсуждая и осуждая, но не многие могут понять, что Григорий Перельман хочет быть просто Свободным Человеком, свободным и независимым в этом Мире и во всей Вселенной. Он отказался поклоняться и преклоняться их Золотому Тельцу - что раздражает правящую элиту больше всего. Его энергия и его сила гения останутся с ним, он будет свободен в выборе своего пути.

  2. Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)

    SpoilerTarget">Спойлер: кому интересно....читаем.....

    сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

    Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

    Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

    Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

    Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемоюформулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

    В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу ».

    «Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

    В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык , это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .

    Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» тема «Эзоосмическая решётка»).

    Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современникамипространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

    Исключительная важность гипотезы , выдвинутой около века назад математиком Пуанкаре , касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

    Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

    Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентныистине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да ичеловеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» и в книге «АллатРа» последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа» и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» ) , в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

    Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

    - Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

    - Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

    - Трёхмерное многообразие без края . Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

    - Полното́рие (полното́рий) - геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие - бублик, тогда как тор - только его поверхность (пустотелая камера колеса).

    - Односвязное . Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

    - Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

  3. Теорема Пуанкаре. Конечная бесконечность Вселенной математически доказана. Часть 2

    SpoilerTarget">Спойлер: читаем здесь.......

    Проблема, которую решил Перельман, состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» . Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

    Анри Пуанкаре сформулировал гипотезу, которая стала известна как гомологическая трёхмерная сфера Пуанкаре. Сферу, кстати, совсем недавно ученые приспособили в астрофизике - оказалось, что Вселенная вполне может оказаться гомологической 3-сферой Пуанкаре .

    Обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой.

    В этом состоит значение результата Перельмана для физики и астрономии . Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера.

    Стоит отметить, что мы описали лишь выводы официальной науки. Изучением многомерности Вселенной активно занимаются учёные сообщества АЛЛАТРА НАУКА. Очень детально этот вопрос описан в книге «АллатРа» , а также в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» .

    Физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой. Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость.

    Согласно знаниям, изложенными в книгах Анастасии Новых, в подтверждении выше описанного факта, приведём цитату: «Даже современному человеку с его довольно развитым мышлением тяжело объяснить действительный процесс сотворения Вселенной, даже такой факт, что такое «конечная бесконечность Вселенной ».

    В том числе о «конечности бесконечной Вселенной» более подробно указано в докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА»: «Вселенная существует, т.е. ограничена пределами эзоосмической решётки ».

    О таком свойстве, как «конечность бесконечной Вселенной» в своих трудах описал Успенский Владимир Андреевич - доктор физико-математических наук, профессор. Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности . В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего, Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна».

    В заключении приведём отрывок из книги Анастасии Новых «Сэнсэй-IV»: «Люди до сих пор не могут понять, как из ничего может появиться что-то. Это нарушает логику. Логика не способна воспринять нелогичность. Человек может воспринять что-то нелогичное, лишь поверив в него, как говорится, на слово. Но наука и вера у нас сегодня существуют практически отдельно друг от друга . Науке нужны факты, то, что можно пощупать, потрогать, увидеть или хотя бы теоретически доказать. Поэтому для нынешней науки не понятно , что значит «Вселенная зародилась из ничего» или что значит «конечность бесконечной Вселенной ». Ведь по логике вещей раз что-то «конечно», значит за ним должно быть что-то, что определяет эту конечность: стенка, пустота или наличие ещё чего-нибудь, поскольку этот мир в их понимании подчинён материальным законам. Но мы ставим во главе материю, поскольку сам наш мозг материален, и по большей части мы мыслим, оцениваем происходящее категориями логики. Когда мы думаем, что за Вселенной нет ничего, это замыкает наше сознание на нелогичности этого восприятия. Хотя наш мир на самом деле - соединение духовного и материального - существует соответственно по законам этого слияния, а не просто законов материи, как полагают сейчас ».

  4. Потоки Риччи
    Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0. Теперь каждой точке кривой назначается вектор, перпендикулярный вектору угловой скорости, а длиной равный величине кривизны. Его направление внутрь при положительной кривизне и вовне - при отрицательной. Каждую точку заставляем двигаться в направлении и со скоростью, определяемыми соответствующим вектором. Замкнутая кривая, проведенная в любом месте плоскости, при такой эволюции превращается в окружность. Это справедливо для размерности 3, что и требовалось доказать.

Гипотеза Пуанкаре

Гипотеза Пуанкаре́ (точнее Теорема Пуанкаре́ - поскольку это доказанная гипотеза ) является одной из наиболее известных задач топологии. Она даёт достаточное условие того, что пространство является трёхмерной сферой с точностью до деформации.

Формулировка

Гипотеза Пуанкаре

В исходной форме гипотеза Пуанкаре утверждает. Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

Обобщённая гипотеза Пуанкаре.

Обобщённая гипотеза Пуанкаре утверждает: Для любого натурального числа n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Исходная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при n = 3.

История

В 1900 годуПуанкаресделал предположение, что трёхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В1904 годуон же нашёл контрпример, называемый теперьсферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

Гипотеза Пуанкаре долгое время не привлекала интереса. В 1930-х годах Джон Уайтхедвозродил интерес к гипотезе объявив о доказательстве, но затем отказался от него.

Доказательства обобщённой гипотезы Пуанкаре для n ≥ 5 получены в начале 1960-1970-х почти одновременноСмейлом, независимо и другими методамиСтоллингсом(англ. ) (дляn ≥ 7, его доказательство было распространено на случаиn = 5 и 6Зееманом(англ. )). Доказательство значительно более трудного случаяn = 4 было получено только в1982 годуФридманом. Из теоремыНовиковао топологической инвариантности характеристическихклассов Понтрягинаследует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях.

Доказательство исходной гипотезы Пуанкаре (и более общей гипотезы Тёрстона) было найдено только в2002 годуГригорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в развёрнутом виде как минимум тремя группами учёных. Доказательство использует модификациюпотока Риччи(так называемыйпоток Риччи с хирургией ) и во многом следует плану, намеченномуГамильтоном, который также первым применил поток Риччи.

Схема доказательства

Поток Риччи - это определённое уравнение в частных производных, похожее на уравнение теплопроводности. Он позволяет деформировать риманову метрику на многообразии, но в процессе деформации возможно образование «сингулярностей» - точек, в которых кривизна стремится к бесконечности, и деформацию невозможно продолжить. Основной шаг в доказательстве состоит в классификации таких сингулярностей в трёхмерном ориентированном случае. При подходе к сингулярности поток останавливают и производят «хирургию» - выбрасывают малую связную компоненту или вырезают «шею» (то есть, открытую областьдиффеоморфную прямому произведению ), а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой - после чего продолжают деформацию вдоль потока Риччи.

Процесс, описанный выше, называется «поток Риччи с хирургией». Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме.

При доказательстве гипотезы Пуанкаре начинают с произвольной римановой метрики на односвязном трёхмерном многообразии и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» всё. Это означает, что исходное многообразие можно представить как набор сферических пространственных форм , соединённых друг с другом трубками . Подсчёт фундаментальной группы показывает, что диффеоморфно связной сумме набора пространственных форм и более того все тривиальны. Таким образом, является связной суммой набора сфер, то есть сферой.

  • Математика
    • Tutorial

    Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

    Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

    Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

    Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

    Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

    Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

    Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

    Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

    Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

    С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

    Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

    Из 26 букв у нас получается всего 8 классов.

    На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

    Формальная постановка вопроса

    Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

    Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

    Гипотеза Пуанкаре для поверхностей

    Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

    Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

    Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

    Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

    Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

    Рассмотрим примеры простейших склеек:

    В первом случае у нас получится сфера:

    Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

    В третьем случае получится так называемая бутылка Клейна:

    Если склеивать не все стороны многоугольника, то получится поверхность с краем:

    Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

    Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

    Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

    Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

    Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

    Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

    На плоскости можно стянуть любую петлю:

    А вот какие петли бывают на торе:

    Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.

    Эйлерова характеристика

    Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

    Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.

    Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

    Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.

    Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

    Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

    Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

    Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.

    Немногие математические теории так взволновали далекую от абстрактных геометрических рассуждений общественность, как эта. Гипотеза Пуанкаре, выдвинутая в 1887 году французским математиком Анри Пуанкаре, уже более сотни лет не давала покоя ученым разных стран. Ею заинтересовались не только геометры, но и физики, и даже… спецслужбы. Поэтому такую сенсацию вызвало сообщение о том, что секрет гипотезы, над которой ломало голову столько светлых умов, наконец, раскрыт, и доказана. Масла в огонь народного интереса подлил и тот факт, что доказавший теорему ученый - российский математик Григорий Перельман - в 2006 году отказался от присужденной ему Филдсовской математической премии (и сопутствующего ей миллиона долларов). Никак не отреагировал ученый и на награждение его Премией Тысячелетия математическим институтом Клэя.

    Однако, - спросит читатель, далекий от математики, - отчего такой интерес вызывает именно гипотеза Пуанкаре? И почему за ее доказательство платят такие огромные деньги? Для этого, пусть и в самых общих чертах, необходимо охарактеризовать, что представляет собой эта гипотеза в рамках такой области математики, как топология. Представьте себе слабо надутый воздушный шарик. Если его мять, то можно придавать ему разные формы: куб, овальная сфера и даже формы людей и животных. Но все это разнообразие геометрических форм может превращаться в одну универсальную форму - шар. Единственное, во что не может превратиться шарик без разрывов - это в форму с дыркой, например, в бублик.

    Гипотеза Пуанкаре утверждала, что все предметы, не имеющие сквозного отверстия, имеют одну основу - шар. А вот тела, имеющие отверстие (математики называют их тор, но для нас пусть будет «бублик») совместимы друг с другом, но не со сплошными телами. К примеру, если мы слепим из пластилина кошку, мы можем умять ее в шар и из него слепить, не употребляя разрывы, ежа или рельсу. Если мы слепим бублик, мы можем деформировать его в «восьмерку» или кружку, а вот в шар уже не удастся. Тор и сфера несовместимы - на математическом языке негомеоморфны.

    Примечательно, что доказательством этой теории заинтересовались не столько математики, сколько астрофизики. Если теория Пуанкаре применима ко всем материальным телам во Вселенной, то почему бы не представить на минутку, что она также верна относительно самой Вселенной? А что, если вся материя возникла из маленькой, одномерной точки и сейчас разворачивается в многомерную сферу? И где ее границы? И что за границами? И что, если найти механизм свертывания Вселенной назад, к отправной точке? Поскольку в доказательстве своей гипотезы сам автор допустил ошибку, много математиков и физиков, подпав под чары гипотезы Пуанкаре, принялись самоотверженно работать над ее доказательством. Несколько из них - Д. Г. Уайтхед, Бинг, К. Папакириакопоулос, С. Смейл, М. Фридман - положили свою жизнь на доказательство теории Пуанкаре.

    Но в результате лавры достались малоизвестному питерскому ученому Перельману, хотя формально - на страницах рецензируемых журналов - его доказательство так и не увидело свет. Работа Григория Яковича была размещена на сайте arXiv.org в 2002 году, но, тем не менее, произвела в научном мире эффект взорвавшейся бомбы. Поскольку чудаковатый математик даже не потрудился «отшлифовать» свое доказательство, некоторые ученые решили перехватить лавры первооткрывателя. Так, китайские математики Хуайдун Цао и Сипин Чжу назвали доказательства Перельмана промежуточными, и дополнили его. Однако присуждение Премии Тысячелетия российскому математику (хоть он и отказался ее получить) поставило все точки над «і»: гипотеза Пуанкаре доказана именно Перельманом. Когда же журналистам все-таки удалось взять интервью у гениального математика, на вопрос, почему он отказался от премии в один миллион долларов, прозвучал странный ответ: «Если я владею Вселенной, то зачем мне в таком случае миллион?»

    В чём суть теоремы Пуанкаре

    1. Е доказала РАЖАЯ Софья вот а тоже РЫЖАЯ....
    2. Суть в том, что Вселенная имеет не форму сферы, а бублика
    3. Cмысл гипотезы Пуанкаре в ее изначальной формулировке состоит в том, что для любого трехмерного тела без отверстий найдется такое преобразование, которое позволит его без разрезания и склеивания превратить в шар. Если это кажется очевидным, то что, если пространство не трехмерное, а содержит десять или одиннадцать измерений (то есть речь идет об обобщенной формулировке гипотезы Пуанкаре, которую и доказал Перельман)
    4. в 2-х словах не расскажешь
    5. В 1900 году Пуанкаре сделал предположение, что трхмерное многообразие со всеми группами гомологий как у сферы гомеоморфно сфере. В 1904 году он же нашл контр-пример, называемый теперь сферой Пуанкаре, и сформулировал окончательный вариант своей гипотезы. Попытки доказать гипотезу Пуанкаре привели к многочисленным продвижениям в топологии многообразий.

      Доказательства обобщнной гипотезы Пуанкаре для n #10878; 5 получены в начале 19601970-х почти одновременно Смейлом, независимо и другими методами Столлингсом (англ.) (для n #10878; 7, его доказательство было распространено на случаи n = 5 и 6 Зееманом (англ.)) . Доказательство значительно более трудного случая n = 4 было получено только в 1982 году Фридманом. Из теоремы Новикова о топологической инвариантности характеристических классов Понтрягина следует, что существуют гомотопически эквивалентные, но не гомеоморфные многообразия в высоких размерностях.

      Доказательство исходной гипотезы Пуанкаре (и более общей гипотезы Трстона) было найдено только в 2002 году Григорием Перельманом. Впоследствии доказательство Перельмана было проверено и представлено в разврнутом виде как минимум тремя группами учных. 1 Доказательство использует поток Риччи с хирургией и во многом следует плану, намеченному Гамильтоном, который также первым применил поток Риччи.

    6. хто это такой
    7. Теорема Пуанкаре:
      Теорема Пуанкаре о векторном поле
      Теорема Пуанкаре Бендиксона
      Теорема Пуанкаре о классификации гомеоморфизмов окружности
      Гипотеза Пуанкаре о гомотопической сфере
      Теорема Пуанкаре о возвращении

      Вы о какой спрашиваете?

    8. В теории динамических систем, теорема Пуанкаре о классификации гомеоморфизмов окружности описывает возможные типы обратимой динамики на окружности, в зависимости от числа вращения p(f) итерируемого отображения f. Грубо говоря, оказывается, что динамика итераций отображения в определнной степени похожа на динамику поворота на соответствующий угол.
      А именно, пусть задан гомеоморфизм окружности f. Тогда:
      1) Число вращения рационально тогда и только тогда, когда у f есть периодические точки. При этом знаменатель числа вращения это период любой периодической точки, а циклический порядок на окружности точек любой периодической орбиты такой же, как и у точек орбиты поворота на p(f). Далее, любая траектория стремится к некоторой периодической как в прямом, так и в обратном времени (a- и -w предельные траектории при этом могут быть разными) .
      2) Если число вращения f иррационально, то возможны два варианта:
      i) либо у f есть плотная орбита, и тогда гомеоморфизм f сопряжн повороту на p(f). В этом случае все орбиты f плотны (поскольку это верно для иррационального поворота) ;
      ii) либо у f есть канторово инвариантное множество C, являющееся единственным минимальным множеством системы. В этом случае все траектории стремятся к C как в прямом, так и в обратном времени. Кроме того, отображение f полусопряжено повороту на p(f): для некоторого отображения h степени 1, p o f =R p (f) o h

      При этом множество C в точности является множеством точек роста h иными словами, с топологической точки зрения, h схлопывает интервалы дополнения до C.

    9. суть вопроса - 1 млн долларов
    10. В том что ее не кто не понимает кроме 1 человека
    11. Во внешней политике Франции..
    12. Вот здесь Лка лучше всех ответила http://otvet.mail.ru/question/24963208/
    13. Гениальный математик, парижский профессор Анри Пуанкаре занимался самыми разными областями этой науки. Самостоятельно и независимо от работ Эйнштейна в 1905 году он выдвинул основные положения Специальной теории относительности. А свою знаменитую гипотезу он сформулировал еще в 1904 году, так что на ее решение потребовалось около столетия.

      Пуанкаре был одним из родоначальников топологии науке о свойствах геометрических фигур, которые не изменяются при деформациях, происходящих без разрывов. К примеру, воздушный шарик можно с легкостью деформировать в самые разные фигуры как это делают для детей в парке. Но потребуется разрезать шарик, чтобы скрутить из него бублик (или, говоря геометрическим языком, тор) другого способа не существует. И наоборот: возьмите резиновый бублик и попробуйте превратить его в сферу. Впрочем, все равно не выйдет. По своим топологическим свойствам поверхности сферы и тора несовместимы, или негомеоморфны. Зато любые поверхности без дырок (замкнутые поверхности) , наоборот, гомеоморфны и способны, деформируясь, переходить в сферу.

      Если насчет двумерных поверхностей сферы и тора все было решено еще в XIX веке, для более многомерных случаев потребовалось гораздо больше времени. В этом, собственно, и состоит суть гипотезы Пуанкаре, которая расширяет закономерность на многомерные случаи. Немного упрощая, гипотеза Пуанкаре гласит: Всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере. Забавно, что вариант с трехмерными поверхностями оказался самым непростым. В 1960 году гипотеза была доказана для размерностей 5 и выше, в 1981 для n=4. Камнем преткновения стала именно трехмерность.

      Развивая идеи Вильяма Трстена и Ричарда Гамильтона, предложенные ими в 1980-х годах, Григорий Перельман применил к трехмерным поверхностям особое уравнение плавной эволюции. И сумел показать, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу (это поверхность четырехмерного шара, и существует она в 4-мерном пространстве) . По словам ряда специалистов, это была идея нового поколения, решение которой открывает новые горизонты для математической науки.

      Интересно, что сам Перельман отчего-то не потрудился довести свое решение до окончательного блеска. Описав решение в целом в препринте The entropy formula for the Ricci flow and its geometric applications в ноябре 2002 года, он в марте 2003 года дополнил доказательство и изложил его в препринте Ricci flow with surgery on three-manifolds, а также сообщил о методе в серии лекций, которые прочел в 2003 году по приглашениям ряда университетов. Ни один из рецензентов не смог обнаружить в предложенном им варианте ошибок, но и публикации в реферируемом научном издании Перельман не выпустил (а именно таковым, в частности было необходимое условие получения премии Математического института Клэя) . Зато в 2006 году на основе его метода вышел целый набор доказательств, в которых американские и китайские математики подробно и полностью рассматривают проблему, дополняют моменты, опущенные Перельманом, и выдают окончательное доказательство гипотезы Пуанкаре.

    14. Обобщнная гипотеза Пуанкаре утверждает, что:
      Для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей.
      Исходная гипотеза Пуанкаре является частным случаем обобщнной гипотезы при n = 3.
      За расъяснениями - в лес по грибы, там ходит Григорий Перельман)
    15. Теорема Пуанкаре о возвращении одна из базовых теорем эргодической теории. Ее суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернется в свою начальную окрестность. Полная формулировка теоремы следующая 1:
      Пусть сохраняющее меру преобразование пространства с конечной мерой и пусть измеримое множество. Тогда для любого натурального
      .
      У данной теоремы есть неожиданное следствие: оказывается, если в сосуде, разделенном перегородкой на два отсека, один из которых заполнен газом, а другой пуст, удалить перегородку, то через некоторое время все молекулы газа вновь соберутся в исходной части сосуда. Разгадка этого парадокса в том, что некоторое время имеет порядок миллиардов лет.
    16. у него теорем как собак в корее резанных.. .

      вселенная имеет сферическую форму.. . http://ru.wikipedia.org/wiki/Пуанкаре, _Анри

      вот вчера учные объявили - что вселенная замороженная субстанция... и попросили много денег для доказательства этого... опять мерикосы станок включат печатный... для утехи яйцеголовых...

    17. Попробуй доказать, где верх и низ в невесомости.
    18. Вчера был прекрасный фильм по КУЛЬТУРе, в котором на пальцах объяснялась эта проблема. Может, он у них еще есть?

      http://video.yandex.ru/#search?text=РРР СР Р РРСРР СРРРРwhere=allfilmId=36766495-03-12
      Входите в Яндекс и пишете Фильм о Перельмане и выходите на фильм