Закон распределения функции одного случайного аргумента. Функции случайных аргументов

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин (X_1,X_2,\ldots,X_n) , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Y=\varphi(X_1,X_2,\ldots,X_n).

Требуется определить закон распределения случайной величины Y , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Y=\varphi(X).

\begin{array}{|c|c|c|c|c|}\hline{X}&x_1&x_2&\cdots&x_n\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Тогда Y=\varphi(X) также дискретная случайная величина с возможными значениями . Если все значения y_1,y_2,\ldots,y_n различны, то для каждого k=1,2,\ldots,n события \{X=x_k\} и \{Y=y_k=\varphi(x_k)\} тождественны. Следовательно,

P\{Y=y_k\}=P\{X=x_k\}=p_k


и искомый ряд распределения имеет вид

\begin{array}{|c|c|c|c|c|}\hline{Y}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Если же среди чисел y_1=\varphi(x_1),y_2=\varphi(x_2),\ldots,y_n=\varphi(x_n) есть одинаковые, то каждой группе одинаковых значений y_k=\varphi(x_k) нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения f(x) случайной величины X , найти плотность распределения g(y) случайной величины Y=\varphi(X) . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция y=\varphi(x) является монотонно возрастающей, непрерывной и дифференцируемой на интервале (a;b) , на котором лежат все возможные значения величины X . Тогда обратная функция x=\psi(y) существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

G(y)=f\bigl(\psi(y)\bigr)\cdot |\psi"(y)|.

Пример 1. Случайная величина X распределена с плотностью

F(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}

Найти закон распределения случайной величины Y , связанной с величиной X зависимостью Y=X^3 .

Решение. Так как функция y=x^3 монотонна на промежутке (-\infty;+\infty) , то можно применить формулу (6.2). Обратная функция по отношению к функции \varphi(x)=x^3 есть \psi(y)=\sqrt{y} , ее производная \psi"(y)=\frac{1}{3\sqrt{y^2}} . Следовательно,

G(y)=\frac{1}{3\sqrt{2\pi}}e^{-\sqrt{y^2}/2}\frac{1}{\sqrt{y^2}}

Рассмотрим случай немонотонной функции. Пусть функция y=\varphi(x) такова, что обратная функция x=\psi(y) неоднозначна, т. е. одному значению величины y соответствует несколько значений аргумента x , которые обозначим x_1=\psi_1(y),x_2=\psi_2(y),\ldots,x_n=\psi_n(y) , где n - число участков, на которых функция y=\varphi(x) изменяется монотонно. Тогда

G(y)=\sum\limits_{k=1}^{n}f\bigl(\psi_k(y)\bigr)\cdot |\psi"_k(y)|.

Пример 2. В условиях примера 1 найти распределение случайной величины Y=X^2 .

Решение. Обратная функция x=\psi(y) неоднозначна. Одному значению аргумента y соответствуют два значения функции x


Применяя формулу (6.3), получаем:

\begin{gathered}g(y)=f(\psi_1(y))|\psi"_1(y)|+f(\psi_2(y))|\psi"_2(y)|=\\\\=\frac{1}{\sqrt{2\pi}}\,e^{-\left(-\sqrt{y^2}\right)^2/2}\!\left|-\frac{1}{2\sqrt{y}}\right|+\frac{1}{\sqrt{2\pi}}\,e^{-\left(\sqrt{y^2}\right)^2/2}\!\left|\frac{1}{2\sqrt{y}}\right|=\frac{1}{\sqrt{2\pi{y}}}\,e^{-y/2}.\end{gathered}

Закон распределения функции двух случайных величин

Пусть случайная величина Y является функцией двух случайных величин, образующих систему (X_1;X_2) , т. е. Y=\varphi(X_1;X_2) . Задача состоит в том, чтобы по известному распределению системы (X_1;X_2) найти распределение случайной величины Y .

Пусть f(x_1;x_2) - плотность распределения системы случайных величин (X_1;X_2) . Введем в рассмотрение новую величину Y_1 , равную X_1 , и рассмотрим систему уравнений

Будем полагать, что эта система однозначно разрешима относительно x_1,x_2


и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины Y

G_1(y)=\int\limits_{-\infty}^{+\infty}f(x_1;\psi(y;x_1))\!\left|\frac{\partial\psi(y;x_1)}{\partial{y}}\right|dx_1.

Заметим, что рассуждения не изменяются, если введенную новую величину Y_1 положить равной X_2 .

Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина Y является функцией случайного аргумента X с заданным законом распределения

Y=\varphi(X).

Требуется, не находя закона распределения величины Y , определить ее математическое ожидание

M(Y)=M[\varphi(X)].

Пусть X - дискретная случайная величина, имеющая ряд распределения

\begin{array}{|c|c|c|c|c|}\hline{x_i}&x_1&x_2&\cdots&x_n\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Составим таблицу значений величины Y и вероятностей этих значений:

\begin{array}{|c|c|c|c|c|}\hline{y_i=\varphi(x_i)}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Эта таблица не является рядом распределения случайной величины Y , так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины Y можно определить по формуле

M[\varphi(X)]=\sum\limits_{i=1}^{n}\varphi(x_i)p_i,


так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции \varphi(X) , а содержит только закон распределения аргумента X . Таким образом, для определения математического ожидания функции Y=\varphi(X) вовсе не требуется знать закон распределения функции \varphi(X) , а достаточно знать закон распределения аргумента X .

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

M[\varphi(X)]=\int\limits_{-\infty}^{+\infty}\varphi(x)f(x)\,dx,


где f(x) - плотность распределения вероятностей случайной величины X .

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

M(X+Y)=M(X)+M(Y).

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

M(XY)=M(X)M(Y)+\mu_{xy}.

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Дисперсия функции случайных величин

По определению дисперсии имеем D[Y]=M[(Y-M(Y))^2]. . Следовательно,

D[\varphi(x)]=M[(\varphi(x)-M(\varphi(x)))^2] , где .

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента Y=\varphi(X) дисперсия выражается формулой

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}(\varphi(x)-M(\varphi(x)))^2f(x)\,dx,

где M(\varphi(x))=M[\varphi(X)] - математическое ожидание функции \varphi(X) ; f(x) - плотность распределения величины X .

Формулу (6.5) можно заменить на следующую:

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}\varphi^2(x)f(x)\,dx-M^2(X)

Рассмотрим теоремы о дисперсиях , которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D+2\sum\limits_{i

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D \mu_{y_1y_2}= M(Y_1Y_2)-M(Y_1)M(Y_2).

\mu_{y_1y_2}=M(\varphi_1(X)\varphi_2(X))-M(\varphi_1(X))M(\varphi_2(X)).


т. е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции .

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

|\mu_{xy}|\leqslant\sqrt{D[X]\cdot D[Y]}=\sigma_x\cdot \sigma_y,

ЧАСТЬ 6

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 11

    1. ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН

ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих при этом задач; вывести закон распределения функции одного случайного аргумента и закон распределения суммы двух случайных величин; пояснить понятие композиции законов распределения.

Понятие о функции случайной величины

Среди практических приложений теории вероятностей особое место занимают задачи, требующие нахождения законов распределения и/или числовых характеристик функций случайных величин. В простейшем случае задача ставится следующим образом: на вход технического устройства поступает случайное воздействие
; устройство подвергает воздействие
некоторому функциональному преобразованиюи на выходе дает случайную величину
(см. рис. 6.1). Нам известен закон распределения случайной величины
, и требуется найти закон распределения и/или числовые характеристики случайной величины.

Можно выделить три основные возникающие задачи:

1. Зная закон распределения случайной величины
(или случайного вектора
), найти закон распределения выходной случайной величины
(или
).

2. Зная закон распределения случайной величины
, найти только числовые характеристики выходной случайной величины.

3. В некоторых случаях (при особых видах преобразования ) для нахождения числовых характеристик выхода не требуется знать закон распределения входной случайной величины
, а достаточно знать только его числовые характеристики.

Рассматриваем случайную величину , зависящую функционально от случайной величины
, т. е.
. Пусть случайная величина
дискретна и известен ее ряд распределения:


где
.

При подаче на вход значения случайной величины
на выходе получим
с вероятностью. И так для всех возможных значений случайной величины
. Таким образом, получаем табл. 6.1.

Таблица 6.1


Полученная табл. 6.1 в общем случае может не быть рядом распределения случайной величины , так как значения в верхней строке таблицы могут быть расположены в невозрастающем порядке, а некоторые
могут даже совпадать.

Для преобразования табл. 6.1 в ряд распределения случайной величины необходимо упорядочить возможные значения
по возрастанию, а вероятности совпадающих значений
нужно сложить.

Для нахождения числовых характеристик случайной величины преобразовывать (6.1) в ряд распределения нет необходимости, так как их можно вычислить по таблице (6.1). Действительно, находя сумму произведений возможных значений случайной величинына их вероятности, получаем

. (6.1)

Таким образом, зная только закон распределения аргумента
, можно найти математическое ожидание функции случайной величины.

Аналогично находим дисперсию случайной величины :

Аналогично определяем начальные и центральные моменты любых порядков случайной величины
:

Для непрерывной случайной величины
, имеющей плотность распределения
, получаем

;

;

Видим, что для нахождения числовых характеристик функции
вовсе не нужно знать ее закон распределения – достаточно знания закона распределения аргумента
.

Теоремы о числовых характеристиках функций случайных величин

В некоторых задачах числовые характеристики системы случайных величин
можно определить как функции числовых характеристик системы случайных величин
. В этом случае не требуется даже знание закона распределения аргумента, например совместную плотность распределения
, а достаточно иметь только числовые характеристики этой системы случайных величин. Для решения таких задач сформулированы следующие теоремы о числовых характеристиках функций случайных величин:

1.
, 3.
,

2.
, 4.
,

где – неслучайная величина.

5. для любого числа слагаемых, как независимых, так и зависимых, коррелированных и некоррелированных.

6. Математическое ожидание от линейной комбинации случайных величин
равно той же линейной функции от математических ожиданий рассматриваемых случайных величин:

.

7. Дисперсия суммы случайных величин равна сумме всех элементов корреляционной матрицы
этих случайных величин

.

Так как корреляционная матрица
симметрична относительно главной диагонали, на которой находятся дисперсии, то последнюю формулу перепишем в виде

.

Если случайные величины
не коррелированы , то справедлива теорема о сложении дисперсий:

.

8. Дисперсия линейной функции случайных величин определяется по формуле

.

9. Математическое ожидание произведения двух случайных величин равно произведению математических ожиданий плюс ковариация

Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий

10. Дисперсия произведения независимых случайных величин

выражается формулой

Если случайные величины
независимые и центрированные, получаем

.

Закон распределения функции случайного аргумента

Есть непрерывная случайная величина
с плотностью распределения
, связанная со случайной величинойфункциональной зависимостью
. Требуется найти закон распределения случайной величиной.

Рассмотрим случай, когда
строго монотонна, непрерывна и дифференцируема на интервале
всех возможных значений случайной величиной
.

Функция распределения
случайной величинойпо определению есть
. Если функция
монотонно возрастает на участке всех возможных значений случайной величиной
, то событие
эквивалентно событию
, где
есть функция,обратная функции
. Когда случайная величина
принимает значения на участке
, то случайная точка
перемещается по кривой
(ордината полностью определяется абсциссой) (см. рис. 6.2). Из строгой монотонности
следует монотонность
, и поэтому функцию распределения случайной величинойможно записать следующим образом:

.

Дифференцируя это выражение по , входящему в верхний предел интеграла, получаем плотность распределения случайной величинойв виде

Если функция
на участке
возможных значений случайной величиной
монотонно убывает , то, проведя аналогичные выкладки, получаем

. (6.3)

Диапазон возможных значений случайной величиной
может быть в выражениях (6.2) и (6.3) от
до
.

Так как плотность распределения не может быть отрицательной, то формулы (6.2) и (6.3)можно объединить в одну

. (6.4)

Пример . Пусть функция случайной величины
является линейной, т. е.
, где
. Непрерывная случайная величина
имеет плотность распределения
, и тогда, используя выражение (6.4), найдем закон распределения
, учитывая, что обратная функция есть
, а модуль ее производной равен
,

. (6.5)

Если случайная величина
имеет нормальное распределение

,

то согласно (6.5) получаем

.

Это по-прежнему нормальный закон распределения с математическим ожиданием
, дисперсией
и средним квадратичным отклонением
.

В результате линейного преобразования нормально распределенной случайной величины
получаем случайную величину, также распределенную по нормальному закону.

Закон распределения суммы двух случайных величин. Композиция законов распределения

Имеем систему двух непрерывных случайных величин
и их сумму – случайную величину
. Необходимо найти закон распределения случайной величины , если известна совместная плотность распределения системы
.

Функция распределения – это площадь области
на плоскости
, где выполняется неравенство
(см. рис. 6.3), т. е.

.

Продифференцировав это выражение по, получаем плотность распределения вероятности случайной величины

.

Учитывая симметрию слагаемых, можно записать аналогичное соотношение

.

Если случайные величины и
независимы, т. е. выполняется равенство, то две последние формулы примут вид:

; (6.6)

. (6.7)

В том случае, когда складываются независимые случайные величины и
, то говорят окомпозиции законов распределения . Для обозначения композиции законов распределения иногда применяется символьная запись:
.

Закон распределения называется устойчивым к композиции , если при композиции законов распределения этого типа получается снова тот же закон, но с другими значениями параметров. Например, если сложить две независимые нормальные случайные величины, то результирующая случайная величина будет иметь нормальный закон распределения, т. е. нормальный закон устойчив к композиции. Кроме нормального закона, устойчивыми к композиции являются законы распределения Эрланга, биноминальный, Пуассона.

Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргумента Х и записывают Y=φ(Х). Если Х – дискретная случайная величина и функция Y=φ(Х) – монотонная, то . Если φ(Х) – немонотонная функция, то различным значениям Х могут соответствовать одинаковые значения Y, тогда вероятности возможных значений Х, при которых Y принимает одинаковые значения следует сложить.

Если Х – непрерывная случайная величина с плотностью f(x), а y=φ(x) дифференцируемая строго возрастающая или строго убывающая функция, обратная для которой x=ψ(y) то плотность распределения g(y) случайной величины Y находят из равенства

Если функция φ(x) не монотонна на интервале возможных значений Х, то этот интервал следует разбить на интервалы монотонности, найти плотность для каждого интервала, а затем результаты просуммировать.

Математическое ожидание функции Y=φ(Х) вычисляется по формулам:

или
,

а дисперсия –

Пример 1. Дискретная случайная величина задана законом распределения:

Найти закон распределения случайной величины Y=X 2 , математическое ожидание M(Y), D(Y) и σ(Y).

Решение. Найдем возможные значения Y:




Найдем вероятности возможных значений


Следовательно, закон распределения величины Y имеет вид

Пример 2 . Случайная величина Х задана плотностью распределения f(x)=x+0,5 в интервале (0,1); вне этого интервала f(x)=0. Найти: а) плотность распределения функции Y=X 2 ; б) математическое ожидание M(Y); в) дисперсию D(Y).

Решение. а) Так как функция y=x 2 на промежутке (0,1) строго возрастает и имеет обратную
, то

б)

Математическое ожидание можно найти другим способом:

.

3. Случайная величина X задана плотностью распределения f(x)=cos(x) в интервале (0, π/2); вне этого интервала f(x)=0. Найти математическое ожидание функции Y=φ(X)=X 2 (не находя предварительно плотности распределения Y).

4. Случайная величина X задана плотностью распределения f(x) =cos(x) в интервале (0, π/2); вне этого интервала f(x) =0. Найти дисперсию функции Y = φ(Х)=Х2, не находя предварительно плотности распределения Y. Для решения используем формулу

и то, что
.

5. Дискретная случайная величина X задана законом распределения:

Найти закон распределения случайной величины Y=sin(X).

7. Задана плотность распределения f(x) случайной величины X, возможные значения которой заключены в интервале (0,∞). Найти плотность распределения g(у) случайной величины Y, если: а) Y=e -х; б) Y=ln(X); в)Y=X 2 ; г) Y=1/X 2 ; д) Y=Х 3 .

8. Случайная величина X распределена равномерно в интервале (0, π/2). Найти плотность распределения g(y)случайной величины Y=sin(X).

9. Случайная величина X распределена равномерно в интервале (-π/2, π/2). Найти плотность распределения g(y) случайной величины У=cos(X).

аргумент величина квадрат отклонение распределение

Начнем с рассмотрения наиболее простой задачи о законе распределения функции одного случайного аргумента. Так как для практики наибольшее значение имеют непрерывные случайные величины, будем решать задачу именно для них.

Имеется непрерывная случайная величина X с плотностью распределения f(x). Другая случайная величина Y связана с нею функциональной зависимостью: .

Требуется найти плотность распределения величины Y. Рассмотрим участок оси абсцисс, на котором лежат все возможные значения величины X, т. е. .

Способ решения поставленной задачи зависит от поведения функции на участке: является ли она монотонной или нет.

В данном параграфе мы рассмотрим случай, когда функция на участке монотонна. При этом отдельно проанализируем два случая: монотонного возрастания и монотонного убывания функции.

1. Функция на участке монотонно возрастает (рис. 6.1.1). Когда величина X принимает различные значения на участке, случайная точка (X, Y) перемещается только по кривой; ордината этой случайной точки полностью определяется ее абсциссой.

Обозначим плотность распределения величины Y. Для того чтобы определить, найдем сначала функцию распределения величины Y: .

Проведем прямую АВ, параллельную оси абсцисс на расстоянии y от нее (рис. 1). Чтобы выполнялось условие, случайная точка (X,Y) должна попасть на тот участок кривой, который лежит ниже прямой АВ; для этого необходимо и достаточно, чтобы случайная величина X попала на участок оси абсцисс от a до x, где x - абсцисса точки пересечения кривой и прямой АВ. Следовательно,

Так, как монотонная на участке, то существует обратная однозначная функция. Тогда

Дифференцируя интеграл (2) по переменной у, входящей в верхний предел, получим:

2. Функция на участке монотонно убывает (рис. 2). В этом случае

Сравнивая формулы (3) и (5), замечаем, что они могут быть объединены в одну:

Действительно, когда возрастает, ее производная (а значит, и) положительна. При убывающей функции производная отрицательна, но зато перед ней в формуле (5) стоит минус. Следовательно, формула (6), в которой производная берется по модулю, верна в обоих случаях.

3. Рассмотрим случай, когда функция на участке возможных значений аргумента не монотонна (рис. 3).

Найдем функцию распределения G(y) величины Y. Для этого снова проведем прямую АВ, параллельную оси абсцисс, на расстоянии у от нее и выделим те участки кривой, на которых выполняется условие. Пусть этим участкам соответствуют участки оси абсцисс: .

Событие равносильно попаданию случайной величины X на один из участков - безразлично, на какой именно. Поэтому


Таким образом, для функции распределения величины имеем формулу:

Границы интервалов зависят от у и при заданном конкретном виде функции могут быть выражены как явные функции у. Дифференцируя G(y) по величине у, входящей в пределы интегралов, получим плотность распределения величины Y:

Пример. Величина X подчинена закону равномерной плотности на участке отдо.

Найти закон распределения величины.

Xv Х2, ..., Хп. Вид функции Z = ср (Хр Х2, ..., XJ и ее
(Эконометрика)
  • х с плотностью распределения рх. Другая случайная величина у у
  • Ожидаемые и воображаемые случайности в международных отношениях
    Случай - псевдоним Бога, когда он не хочет подписаться своим собственным именем. Анатоль Франс В теории международных отношений прочно закрепилось представление об их системном характере. Обнаружение отличий в проявлении важнейших системных признаков дало возможность выстроить историю международных...
    (Социология воображения международных отношений)
  • Определение числовых характеристик функций случайных аргументов
    Рассмотрим задачу определения числовых характеристик функций случайных аргументов в следующей постановке. Случайная величина Z является функцией системы случайных аргументов Xv Х2, ..., Хп. Вид функции Z = ср (Хр Х2, ..., XJ и ее параметры известны, а числовые характеристики...
    (Эконометрика)
  • Законы распределения функций случайных аргументов
    Имеется непрерывная случайная величина х с плотностью распределения рх. Другая случайная величина у связана с нею функциональной зависимостью Плотность распределения величины у в случае монотонной функции / согласно определяется следующим образом: где /_1...
    (Численный вероятностный анализ неопределенных данных)
  • ПРИМЕНЕНИЕ МЕТОДА СЛУЧАЙНОГО ПОИСКА С ПОСЛЕДОВАТЕЛЬНОЙ РЕДУКЦИЕЙ ОБЛАСТИ ИССЛЕДОВАНИЯ
    МЕТОД СЛУЧАЙНОГО ПОИСКА С ПОСЛЕДОВАТЕЛЬНОЙ РЕДУКЦИЕЙ ОБЛАСТИ ИССЛЕДОВАНИЯ Описание стратегии поиска глобального экстремума Метод случайного поиска глобального экстремума с последовательной редукцией области исследования, метод Лууса- Яакола (Luus- Jakola, LJ), применим к решению задачи...
    (Метаэвристические алгоритмы поиска оптимального программного управления)