Трехмерная прямоугольная система координат. Трехмерные координаты

), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции .

Энциклопедичный YouTube

    1 / 5

    Модель декартовой системы координат.

    Геометрия 11 класс - Прямоугольная система координат в пространстве

    Координатная плоскость ➽ Алгебра 7 класс ➽ Видеоурок

    Видеоурок "Полярная система координат"

    Прямоугольная система координат в пространстве. Координаты вектора. Видеоурок по геометрии 11 класс

    Субтитры

Основные системы

В этом разделе даются разъяснения к наиболее употребляемым системам координат в элементарной математике.

Декартовы координаты

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел (x , y) : {\displaystyle (x,y):}

В пространстве необходимо уже 3 координаты (x , y , z) : {\displaystyle (x,y,z):}

Полярные координаты

В полярной системе координат , применяемой на плоскости, положение точки P определяется её расстоянием до начала координат r = |OP| и углом φ её радиус-вектора к оси Ox .

В пространстве применяются обобщения полярных координат - цилиндрические и сферические системы координат.

Цилиндрические координаты

Цилиндрические координаты - трёхмерный аналог полярных, в котором точка P представляется упорядоченной тройкой (r , φ , z) . {\displaystyle (r,\varphi ,z).}

Примечание: в литературе для первой (радиальной) координаты иногда используется обозначение ρ , для второй (угловой, или азимутальной) - обозначение θ , для третьей координаты - обозначение h .

Полярные координаты имеют один недостаток: значение φ не определено при r = 0 .

Цилиндрические координаты полезны для изучения систем, симметричных относительно некоторой оси. Например, длинный цилиндр с радиусом R в декартовых координатах (с осью z , совпадающей с осью цилиндра) имеет уравнение x 2 + y 2 = R 2 , {\displaystyle x^{2}+y^{2}=R^{2},} тогда как в цилиндрических координатах оно выглядит гораздо проще, как r = R .

Сферические координаты

Сферические координаты - трёхмерный аналог полярных.

В сферической системе координат расположение точки P определяется тремя компонентами: (ρ , φ , θ) . {\displaystyle (\rho ,\varphi ,\theta).} В терминах декартовой системы координат,

Примечание: в литературе иногда азимут обозначается θ , а полярный угол - φ . Иногда для радиальной координаты используется r вместо ρ . Кроме того, диапазон углов для азимута может выбираться как (−180°, +180°] вместо диапазона , а не в диапазоне . Иногда порядок координат в тройке выбирается отличным от описанного; например, полярный и азимутальный углы могут быть переставлены.

Сферическая система координат также имеет недостаток: φ и θ не определены, если ρ = 0; угол φ не определён также и для граничных значений θ = 0 и θ = 180° (или для θ = ±90°, в случае принятия соответствующего диапазона для этого угла).

Для построения точки P по её сферическим координатам нужно от полюса вдоль положительной полуоси z отложить отрезок, равный ρ , повернуть его на угол θ вокруг оси y x , и затем повернуть на угол θ вокруг оси z в направлении положительной полуоси y .

Сферические координаты полезны при изучении систем, симметричных относительно точки. Так, уравнение сферы с радиусом R в декартовых координатах с началом отсчёта в центре сферы выглядит как x 2 + y 2 + z 2 = R 2 , {\displaystyle x^{2}+y^{2}+z^{2}=R^{2},} тогда как в сферических координатах оно становится намного проще: ρ = R . {\displaystyle \rho =R.}

Другие распространённые системы координат

  • Аффинная (косоугольная) система координат - прямолинейная система координат в аффинном пространстве . На плоскости задается точкой начала координат О и двумя упорядоченными неколлинеарными векторами , которые представляют собой аффинный базис. Осями координат в данном случае называются прямые , проходящие через точку начала координат параллельно векторам базиса, которые, в свою очередь, задают положительное направление осей. В трехмерном пространстве , соответственно, аффинная система координат задается тройкой линейно независимых векторов и точкой начала координат. Для определения координат некоторой точки М вычисляются коэффициенты разложения вектора ОМ по векторам базиса .
  • Барицентрические координаты были впервые введены в 1827 году А. Мебиусом , решавшим вопрос о центре тяжести масс, расположенных на вершинах треугольника . Они аффинно инвариантны, представляют собой частный случай общих однородных координат . Точка с барицентрическими координатами расположена в n -мерном векторном пространстве E n , а собственно координаты при этом относятся к фиксированной системе точек, которые не лежат в (n −1)-мерном подпространстве. Барицентрические координаты используются также и в алгебраической топологии применительно к точкам симплекса .
  • Биангулярные координаты - частный случай бицентрических координат, система координат на плоскости, задаваемая двумя фиксированными точками С 1 и С 2 , через которые проводится прямая, выступающая в качестве оси абсцисс. Позиция некоторой точки P , которая не лежит на этой прямой, определяется углами PC 1 C 2 и PC 2 C 1 .
  • Биполярные координаты характеризуются тем, что в качестве координатных линий на плоскости в этом случае выступают два семейства окружностей с полюсами A и B , а также семейство окружностей, ортогональных к ним. Преобразование биполярных координат в декартовы прямоугольные осуществляется посредством специальных формул. Биполярные координаты в пространстве называются бисферическими; в этом случае координатными поверхностями являются сферы , поверхности, образуемые вращением дуг окружностей, а также полуплоскости , проходящие через ось O z .
  • Бицентрические координаты - всякая система координат, которая основана на двух фиксированных точках и в рамках которой положение некоторой другой точки определяется, как правило, степенью её удаления или вообще позицией относительно этих двух основных точек. Системы подобного рода могут быть довольно полезны в определённых сферах научных исследований .
  • Бицилиндрические координаты - система координат, которая образуется в том случае, если система биполярных координат на плоскости O xy параллельно переносится вдоль оси O z . В качестве координатных поверхностей в этом случае выступают семейство пар круговых цилиндров , оси которых параллельны, семейство ортогональных к ним круговых цилиндров, а также плоскость. Для перевода бицилиндрических координат в декартовы прямоугольные для трехмерного пространства также применяются специальные формулы .
  • Конические координаты - трехмерная ортогональная система координат, состоящая из концентрических сфер, которые описываются посредством их радиуса , и двух семейств перпендикулярных конусов , расположенных вдоль осей x и z .
  • Координаты Риндлера используются преимущественно в рамках теории относительности и описывают ту часть плоского пространства-времени , которая обыкновенно называется пространством Минковского . В специальной теории относительности равномерно ускоряющаяся частица находится в гиперболическом движении , и для каждой такой частицы в координатах Риндлера может быть выбрана такая точка отсчёта , относительно которой она покоится.
  • Параболические координаты - это двумерная ортогональная система координат, в которой координатными линиями является совокупность конфокальных парабол . Трехмерная модификация параболических координат строится путём вращения двумерной системы вокруг оси симметрии этих парабол. У параболических координат также имеется определенный спектр потенциальных практических приложений: в частности, они могут использоваться применительно к эффекту Штарка . Параболические координаты связаны определенным отношением с прямоугольными декартовыми .
  • Проективные координаты существуют, согласно наименованию, в проективном пространстве П n (К ) и представляют собой взаимно однозначное соответствие между его элементами и классами конечных подмножеств элементов тела К , характеризующихся свойствами эквивалентности и упорядоченности. Для определения проективных координат проективных подпространств достаточно определить соответствующие координаты точек проективного пространства. В общем случае относительно некоторого базиса проективные координаты вводятся чисто проективными средствами .
  • Тороидальная система координат - трехмерная ортогональная система координат, получаемая в результате вращения двумерной биполярной системы координат вокруг оси, разделяющей два её фокуса. Фокусы биполярной системы, соответственно, превращаются в кольцо с радиусом а , лежащее на плоскости xy тороидальной системы координат, в то время как ось z становится осью вращения системы. Фокальное кольцо также называют иногда базовой окружностью .
  • Трилинейные координаты являются одним из образцов однородных координат и имеют своей основой заданный треугольник, так что положение некоторой точки определяется относительно сторон этого треугольника - главным образом степенью удаленности от них, хотя возможны и другие вариации. Трилинейные координаты могут быть относительно просто преобразованы в барицентрические; кроме того, они также конвертируемы в двумерные прямоугольные координаты, для чего используются соответствующие формулы .
  • Цилиндрические параболические координаты - трехмерная ортогональная система координат, получаемая в результате пространственного преобразования двумерной параболической системы координат. Координатными поверхностями, соответственно, служат конфокальные параболические цилиндры. Цилиндрические параболические координаты связаны определенным отношением с прямоугольными, могут быть применены в ряде сфер научных исследований .
  • Эллипсоидальные координаты - эллиптические координаты в пространстве. Координатными поверхностями в данном случае являются эллипсоиды , однополостные гиперболоиды , а также двуполостные гиперболоиды, центры которых расположены в начале координат. Система ортогональна. Каждой тройке чисел, являющихся эллипсоидальными координатами, соответствуют восемь точек, которые относительно плоскостей системы O xyz симметричны друг другу .

Переход из одной системы координат в другую

Декартовы и полярные

где u 0 - функция Хевисайда с u 0 (0) = 0 , {\displaystyle u_{0}(0)=0,} а sgn - функция signum . Здесь функции u 0 и sgn используются как «логические» переключатели, аналогичные по значению операторам «если.. то» (if…else) в языках программирования. Некоторые языки программирования имеют специальную функцию atan2 (y , x ), которая возвращает правильный φ в необходимом квадранте , определённом координатами x и y .

Декартовы и цилиндрические

x = r cos ⁡ φ , {\displaystyle x=r\,\cos \varphi ,} y = r sin ⁡ φ , {\displaystyle y=r\,\sin \varphi ,} r = x 2 + y 2 , {\displaystyle r={\sqrt {x^{2}+y^{2}}},} φ = arctg ⁡ y x + π u 0 (− x) sgn ⁡ y , {\displaystyle \varphi =\operatorname {arctg} {\frac {y}{x}}+\pi u_{0}(-x)\,\operatorname {sgn} y,} z = z . {\displaystyle z=z.\quad } (d x d y d z) = (r cos ⁡ θ − r sin ⁡ φ 0 r sin ⁡ θ r cos ⁡ φ 0 0 0 1) ⋅ (d r d φ d z) , {\displaystyle {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}={\begin{pmatrix}r\cos \theta &-r\sin \varphi &0\\r\sin \theta &r\cos \varphi &0\\0&0&1\end{pmatrix}}\cdot {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}},} (d r d φ d z) = (x x 2 + y 2 y x 2 + y 2 0 − y x 2 + y 2 x x 2 + y 2 0 0 0 1) ⋅ (d x d y d z) . {\displaystyle {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}&0\\{\frac {-y}{\sqrt {x^{2}+y^{2}}}}&{\frac {x}{\sqrt {x^{2}+y^{2}}}}&0\\0&0&1\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}.}

Декартовы и сферические

x = ρ sin ⁡ θ cos ⁡ φ , {\displaystyle {x}=\rho \,\sin \theta \,\cos \varphi ,\quad } y = ρ sin ⁡ θ sin ⁡ φ , {\displaystyle {y}=\rho \,\sin \theta \,\sin \varphi ,\quad } z = ρ cos ⁡ θ ; {\displaystyle {z}=\rho \,\cos \theta ;\quad } ρ = x 2 + y 2 + z 2 , {\displaystyle {\rho }={\sqrt {x^{2}+y^{2}+z^{2}}},} θ = arccos ⁡ z ρ = arctg ⁡ x 2 + y 2 z , {\displaystyle {\theta }=\arccos {\frac {z}{\rho }}=\operatorname {arctg} {\frac {\sqrt {x^{2}+y^{2}}}{z}},} φ = arctg ⁡ y x + π u 0 (− x) sgn ⁡ y . {\displaystyle {\varphi }=\operatorname {arctg} {\frac {y}{x}}+\pi \,u_{0}(-x)\,\operatorname {sgn} y.} (d x d y d z) = (sin ⁡ θ cos ⁡ φ ρ cos ⁡ θ cos ⁡ φ − ρ sin ⁡ θ sin ⁡ φ sin ⁡ θ sin ⁡ φ ρ cos ⁡ θ sin ⁡ φ ρ sin ⁡ θ cos ⁡ φ cos ⁡ θ − ρ sin ⁡ θ 0) ⋅ (d ρ d θ d φ) , {\displaystyle {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}={\begin{pmatrix}\sin \theta \cos \varphi &\rho \cos \theta \cos \varphi &-\rho \sin \theta \sin \varphi \\\sin \theta \sin \varphi &\rho \cos \theta \sin \varphi &\rho \sin \theta \cos \varphi \\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\cdot {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}},} (d ρ d θ d φ) = (x / ρ y / ρ z / ρ x z ρ 2 x 2 + y 2 y z ρ 2 x 2 + y 2 − (x 2 + y 2) ρ 2 x 2 + y 2 − y x 2 + y 2 x x 2 + y 2 0) ⋅ (d x d y d z) . {\displaystyle {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}}={\begin{pmatrix}x/\rho &y/\rho &z/\rho \\{\frac {xz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {yz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {-(x^{2}+y^{2})}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}.}

Цилиндрические и сферические

r = ρ sin ⁡ θ , {\displaystyle {r}=\rho \,\sin \theta ,} φ = φ , {\displaystyle {\varphi }=\varphi ,\quad } z = ρ cos ⁡ θ ; {\displaystyle {z}=\rho \,\cos \theta ;} ρ = r 2 + z 2 , {\displaystyle {\rho }={\sqrt {r^{2}+z^{2}}},} θ = arctg ⁡ z r + π u 0 (− r) sgn ⁡ z , {\displaystyle {\theta }=\operatorname {arctg} {\frac {z}{r}}+\pi \,u_{0}(-r)\,\operatorname {sgn} z,} φ = φ . {\displaystyle {\varphi }=\varphi .\quad } (d r d φ d h) = (sin ⁡ θ ρ cos ⁡ θ 0 0 0 1 cos ⁡ θ − ρ sin ⁡ θ 0) ⋅ (d ρ d θ d φ) , {\displaystyle {\begin{pmatrix}dr\\d\varphi \\dh\end{pmatrix}}={\begin{pmatrix}\sin \theta &\rho \cos \theta &0\\0&0&1\\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\cdot {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}},} (d ρ d θ d φ) = (r r 2 + z 2 0 z r 2 + z 2 − z r 2 + z 2 0 r r 2 + z 2 0 1 0) ⋅ (d r d φ d z) . {\displaystyle {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}}={\begin{pmatrix}{\frac {r}{\sqrt {r^{2}+z^{2}}}}&0&{\frac {z}{\sqrt {r^{2}+z^{2}}}}\\{\frac {-z}{r^{2}+z^{2}}}&0&{\frac {r}{r^{2}+z^{2}}}\\0&1&0\end{pmatrix}}\cdot {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}}.}

Построение Декартовой прямоугольной системы координат

на плоскости

Декартова прямоугольная система координатна плоскости образуется двумя взаимно перпендикулярными осями координат OX 1 и OX 2 , которые пересекаются в точке O , называемой началом координат (рис.1). На каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси OX 2 вверх, ось OX 1 смотрела направо. OX 1 -- ось абсцисс, OX 2 -- ось ординат. Четыре угла (I, II, III, IV), образованные осями координат OX 1 и OX 2 , называются координатными углами или квадрантами .

Точка B A на координатную ось OX 1 ;

Точка C - ортогональная проекция точки A на координатную ось OX 2 ;

Построение Декартовой прямоугольной системы координат в пространстве

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX -- ось абсцисс, OY -- ось ординат,OZ -- ось аппликат.

Если большой палец правой руки принять за направление X , указательный - за направление Y а средний - за направление Z , то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (рис.2). Точка F - ортогональная проекция точки A на координатную плоскость OXY; Точка E - ортогональная проекция точки A на координатную плоскость OYZ; Точка G - ортогональная проекция точки A на координатную плоскость OX Z ;

Макетное представление Декартовой прямоугольной системы координат в пространстве показано на рисунках 3, 4 и 5.

Определение координат точки в Декартовой прямоугольной системе координат

Главным вопросом любой системы координат является вопрос определения координат точки, находящейся в ее плоскости или пространстве.

Определение координат точки на плоскости Декартовой системы координат

Положение точки A на плоскости определяется двумя координатами - x и y (рис.5). Координата x равна длине отрезка OB , координата y -- длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям OY и OX соответственно. Координата x называется абсциссой (лат. abscissa - отрезок), координата y -- ординатой (лат. ordinates - расположенный в порядке) точки A . Записывают так:

Если точка A лежит в координатном углу I, то она имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то - отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то она имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то - положительную абсциссу и отрицательную ординату.

Так определяются координаты в Декартовой системе координат на плоскости.


Еще из школьного курса алгебры и геометрии мы знаем о понятии трехмерного пространства. Если разобраться, сам термин «трехмерное пространство» определяется как система координат с тремя измерениями (это знают все). По сути, описать любой объемный объект можно при помощи длины, ширины и высоты в классическом понимании. Однако давайте, как говорится, копнем несколько глубже.

Что такое трехмерное пространство

Как уже стало ясно, понимание трехмерного пространства и объектов, способных существовать внутри него, определяется тремя основными понятиями. Правда, в случае с точкой это именно три значения, а в случае с прямыми, кривыми, ломаными линиями или объемными объектами соответствующих координат может быть больше.

В данном случае все зависит именно от типа объекта и применяемой системы координат. Сегодня наиболее распространенной (классической) считается Декартова система, которую иногда еще называют прямоугольной. Она и некоторые другие разновидности будут рассмотрены несколько позже.

Кроме всего прочего, здесь нужно разграничивать абстрактные понятия (если можно так сказать, бесформенные) вроде точек, прямых или плоскостей и фигуры, обладающие конечными размерами или даже объемом. Для каждого из таких определений существуют и свои уравнения, описывающие их возможное положение в трехмерном пространстве. Но сейчас не об этом.

Понятие точки в трехмерном пространстве

Для начала определимся, что представляет собой точка в трехмерном пространстве. В общем-то, ее можно назвать некой основной единицей, определяющей любую плоскую или объемную фигуру, прямую, отрезок, вектор, плоскость и т. д.

Сама же точка характеризуется тремя основными координатами. Для них в прямоугольной системе применяются специальные направляющие, называемые осями X, Y и Z, причем первые две оси служат для выражения горизонтального положения объекта, а третья относится к вертикальному заданию координат. Естественно, для удобства выражения положения объекта относительно нулевых координат в системе приняты положительные и отрицательные значения. Однако же сегодня можно найти и другие системы.

Разновидности систем координат

Как уже говорилось, прямоугольная система координат, созданная Декартом, сегодня является основной. Тем не менее в некоторых методиках задания местоположения объекта в трехмерном пространстве применяются и некоторые другие разновидности.

Наиболее известными считаются цилиндрическая и сферическая системы. Отличие от классической состоит в том, что при задании тех же трех величин, определяющих местоположение точки в трехмерном пространстве, одно из значений является угловым. Иными словами, в таких системах используется окружность, соответствующая углу в 360 градусов. Отсюда и специфичное задание координат, включающее такие элементы, как радиус, угол и образующая. Координаты в трехмерном пространстве (системе) такого типа подчиняются несколько другим закономерностям. Их задание в данном случае контролируется правилом правой руки: если совместить большой и указательный палец с осями X и Y, соответственно, остальные пальцы в изогнутом положении укажут на направление оси Z.

Понятие прямой в трехмерном пространстве

Теперь несколько слов о том, что представляет собой прямая в трехмерном пространстве. Исходя из основного понятия прямой, это некая бесконечная линия, проведенная через точку или две, не считая множества точек, расположенных в последовательности, не изменяющей прямое прохождение линии через них.

Если посмотреть на прямую, проведенную через две точки в трехмерном пространстве, придется учитывать по три координаты обеих точек. То же самое относится к отрезкам и векторам. Последние определяют базис трехмерного пространства и его размерность.

Определение векторов и базиса трехмерного пространства

Заметьте, это могут быть только три вектора, но вот троек векторов можно определить сколько угодно. Размерность пространства определяется количеством линейно-независимых векторов (в нашем случае - три). И пространство, в котором имеется конечное число таких векторов, называется конечномерным.

Зависимые и независимые векторы

Что касается определения зависимых и независимых векторов, линейно-независимыми принято считать векторы, являющиеся проекциями (например, векторы оси X, спроецированные на ось Y).

Как уже понятно, любой четвертый вектор является зависимым (теория линейных пространств). А вот три независимых вектора в трехмерном пространстве в обязательном порядке не должны лежать в одной плоскости. Кроме того, если определять независимые векторы в трехмерном пространстве, они не могут являться, так сказать, один продолжением другого. Как уже понятно, в рассматриваемом нами случае с тремя измерениями, согласно общей теории, можно построить исключительно только тройки линейно-независимых векторов в определенной системе координат (без разницы, какого типа).

Плоскость в трехмерном пространстве

Если рассматривать понятие плоскости, не вдаваясь в математические определения, для более простого понимания этого термина, такой объект можно рассматривать исключительно как двумерный. Иными словами, это бесконечная совокупность точек, у которых одна из координат является постоянной (константой).

К примеру, плоскостью можно назвать любое количество точек с разными координатами по осям X и Y, но одинаковыми координатами по оси Z. В любом случае одна из трехмерных координат остается неизменной. Однако это, так сказать, общий случай. В некоторых ситуациях трехмерное пространство может пересекаться плоскостью по всем осям.

Существует ли более трех измерений

Вопрос о том, сколько может существовать измерений, достаточно интересен. Как считается, мы живем не в трехмерном с классической точки зрения пространстве, а в четырехмерном. Кроме известных всем длины, ширины и высоты, такое пространство включает в себя еще и время существования объекта, причем время и пространство между собой взаимосвязаны достаточно сильно. Это доказал еще Эйнштейн в своей теории относительности, хотя это больше относится к физике, нежели к алгебре и геометрии.

Интересен и тот факт, что сегодня ученые уже доказали существование как минимум двенадцати измерений. Конечно, понять, что они собой представляют, сможет далеко не каждый, поскольку это относится скорее к некой абстрактной области, которая находится вне человеческого восприятия мира. Тем не менее факт остается фактом. И не зря же многие антропологи и историки утверждают, что наши пращуры могли иметь некие специфичные развитые органы чувств вроде третьего глаза, которые помогали воспринимать многомерную действительность, а не исключительно трехмерное пространство.

Кстати сказать, сегодня существует достаточно много мнений по поводу того, что экстрасенсорика тоже является одним из проявлений восприятия многомерного мира, и тому можно найти достаточно много подтверждений.

Заметьте, что современными базовыми уравнениями и теоремами описать многомерные пространства, отличающиеся от нашего четырехмерного мира, тоже не всегда представляется возможным. Да и наука в этой области относится скорее к области теорий и предположений, нежели к тому, что можно явно ощутить или, так сказать, потрогать или увидеть воочию. Тем не менее косвенные доказательства существования многомерных миров, в которых может существовать четыре и более измерений, сегодня ни у кого не вызывают сомнений.

Заключение

В целом же, мы очень кратко рассмотрели основные понятия, относящиеся к трехмерному пространству и базовым определениям. Естественно, существует множество частных случаев, связанных с разными системами координат. К тому же мы постарались особо не лезть в математические дебри для объяснения основных терминов только для того, чтобы вопрос, связанный с ними, был понятен любому школьнику (так сказать, объяснение «на пальцах»).

Тем не менее, думается, даже из таких простых трактовок можно сделать вывод о математическом аспекте всех составляющих, входящих в базовый школьный курс алгебры и геометрии.

Для определения положения точки в пространстве мы будем использовать декартовы прямоугольные координаты (рис.2).

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX, OY, OZ. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно) одинаковы для всех осей. Ось OX называется осью абсцисс (или просто абсциссой), ось OY - осью ординат (ординатой), ось OZ - осью аппликат (апп ликатой).

Положение точки A в пространстве определяется тремя координатами x, y и z. Координата x равна длине отрезка OB, координата y — длине отрезка OC, координата z — длине отрезка OD в выбранных единицах измерения. Отрезки OB, OC и OD определяются плоскостями, проведёнными из точки параллельно плоскостям YOZ, XOZ и XOY соответственно.

Координата x называется абсциссой точки A, координата y — ординатой точки A, координата z — аппликатой точки A.

Символически это записывают так:

или привязывают запись координат к конкретной точке с помощью индекса:

x A , y A , z A ,

Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче, приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка B лежала не как на рисунке — на луче OX, а на его продолжении в обратную сторону от точки O (на отрицательной части оси OX), то абсцисса x точки A была бы отрицательной (минус расстоянию OB). Аналогично и для двух других осей.

Координатные оси OX, OY, OZ, изображенные на рис. 2, образуют правую систему координат. Это означает, что если смотреть на плоскость YOZ вдоль положительного направления оси OX, то движение оси OY в сторону оси OZ будет проходить по часовой стрелке. Эту ситуацию можно описать при помощи правила буравчика : если буравчик (винт с правой резьбой) вращать по направлению от оси OY к оси OZ, то он будет двигаться вдоль положительного направления оси OX.

Векторы единичной длины, направленные вдоль координатных осей, называются координатными ортами. Их обозначают обычно как (рис. 3). Встречается так же обозначение Орты составляют базис координатной системы.

В случае правой системы координат действительны следующие формулы с векторными произведениями ортов:

Метод координат - это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Координаты куба

Если в задаче C2 будет куб - считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат - в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y - по ребру AD, а ось z - по ребру AA 1 .

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу - отдельно для нижней плоскости куба:

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B 1 = (1; 0; 1). Главное - не запутаться!

Призма - это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания - верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб - это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат - в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z - по ребру AA 1 , а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC - равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH - прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Получаем следующие координаты точек:

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема - это точки C и C 1 . У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма - это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание - обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Теперь введем собственно систему координат. Начало координат - точку O - поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y - через середины отрезков AB и DE. Получим такую картинку:

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты верхнего основания сдвинуты на единицу по оси z:

Пирамида - это вообще очень сурово. Мы разберем только самый простой случай - правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S - вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y - вдоль AD, а ось z - вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH - вот и построим ее. Получим следующую картинку:

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH - высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH - это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC - общая). Следовательно, SH = BH. Но BH - половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.