Уравнение шредингер для атома водорода в классической механике. Уравнение шредингера для атома водорода

Уравнение Шрёдингера для водородоподобных атомов. Распределение электронов по оболочкам и подоболочкам в атоме

Половинчатая, полуклассическая теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века.

Боровская модель атома позволила нам составить первое (хотя и довольно грубое) представление о строении атома. Она объяснила, почему атомы испускают и поглощают свет с дискретными длинами волн, и решила проблему стабильности атомов. Вычисленные в рамках боровской модели длины волн линейчатого спектра и энергии ионизации атома водорода и одноэлектронных ионов оказались в превосходном согласии с экспериментом. Но теория Бора имела и существенные ограничения. На её основе нельзя было предсказать линейчатые спектры более сложных атомов – даже нейтрального атома гелия всего лишь с двумя электронами. Теория Бора не смогла объяснить, почему линии испускания при более детальном изучении оказались состоящими из двух или большего числа очень близких линий (так называемая тонкая структура). Теория Боране смогла также объяснить, почему одни спектральные линии ярче других. Не получили объяснения и межатомные связи в молекулах, твёрдых телах и жидкостях. Представление Бора об определенных орбитах, по которым движутся электроны в атоме, оказалось весьма условным. На самом деле движение электрона в атоме очень мало похоже на движение планет или спутников. Физический смысл имеет только вероятность обнаружить электрон в том или ином месте, описываемая квадратом модуля волновой функции |Ψ| 2. Волновая функция Ψ является решением основного уравнения квантовой механики – уравнения Шрёдингера.

Общее уравнение Шрёдингера:

здесь i - мнимая единица; m - масса частицы; r - радиус-вектор, определяющий ее положение; - оператор Лапласа, который в прямоугольной декартовой системе координат записывается в виде

Для любого стационарного состояния волновую функцию можно записать в виде

где функция зависит только от координат частицы; w - вещественный параметр (частота волновой функции).

Стационарное уравнение Шрёдингера

Волновая функция, входящая в это уравнение, описывает состояние микрочастицы в стационарных состояниях.

Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x, y, z на сферические r, θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x,y,z) = R(r) Θ(θ) Φ(φ)

Функцию R(r) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - её угловыми составляющими.

В сферической системе координат уравнение Шрёдингера преобразуется к виду:

, (1)

где Θ и φ - полярный и азимутальный углы соответственно.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n , орбитальное и магнитное m ℓ ). Функция R(r) зависит от n и , функция Θ(θ) - от и m ℓ , функция Φ(φ) - от m ℓ .

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь. Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%) . Это слово происходит от латинского "орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трёх квантовых чисел: главного n , орбитального и магнитного m ℓ .

Главное квантовое число n определяет квантование энергии атома (см. ф.2)

Оно может принимать любые положительные целочисленные значения. Чем больше значение n, тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода даёт следующее выражение для энергии электрона:

E = −2π 2 m e 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль) (2)

Таким образом, каждому значению главного квантового числа отвечает определённое значение энергии электрона. Уровни энергии с определёнными значениями n иногда обозначают буквами K, L, M, N... (для n = 1, 2, 3, 4...).

Для E < 0 уравнение имеет конечные и непрерывные решения только для дискретных значений энергии.

Рис. 1 Энергетическая диаграмма водородоподобного атома

Для квантования момента импульса вводится так называемое орбитальное квантовое число l .

Орбитальное квантовое число определяет орбитальный момент количества движения электрона L e , т. е. определяет допустимые дискретные значения момента импульса электрона.

,

Орбитальное квантовое число характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения от 0 до (n−1). Значения = 0, 1, 2, 3... соответствуют энергетическим подуровням s, p, d, f.

Проекция момента импульса на любое выделенное в пространстве направление (например, направление вектора магнитного поля) также принимает дискретный ряд значений. Для квантования проекции момента импульса вводится магнитное квантовое число m ℓ

Магнитное квантовое число m ℓ – определяет ориентацию орбитального момента количества движения относительно избранного направления z, т. е. определяет допустимые дискретные значения проекции момента импульса на ось z.

где m ℓ = -ℓ, -(ℓ-1), …0, 1, 2 …, ℓ

Всего 2ℓ+1 значение.

Квантовые числа n, , m ℓ связаны определёнными правилами квантования . Например, орбитальное квантовое число может принимать целочисленные значения от 0 до (n – 1). Магнитное квантовое число m ℓ может принимать любые целочисленные значения в интервале ± . Таким образом, каждому значению главного квантового числа n , определяющему энергетическое состояние атома, соответствует целый ряд комбинаций квантовых чисел и m ℓ . Каждой такой комбинации соответствует определённое распределение вероятности |Ψ| 2 обнаружения электрона в различных точках пространства («электронное облако»).

Состояния, в которых орбитальное квантовое число = 0 , описываются сферически симметричными распределениями вероятности. Они называются s-состояниями (1s, 2s, ..., n s , ...). При значениях > 0 сферическая симметрия электронного облака нарушается.

Состояния с = 1 называются p-состояниями ,

с = 2 d-состояниями и т. д.

На рис. 1 изображены кривые распределения вероятности ρ (r) = 4πr 2 |Ψ| 2 обнаружения электрона в атоме водорода на различных расстояниях от ядра в состояниях 1s и 2s.

Рисунок 1. Распределение вероятности обнаружения электрона в атоме водорода в состояниях 1s и 2s. r 1 = 5,29·10 –11 м – радиус первой боровской орбиты

Как видно из рис. 1, электрон в состоянии 1s (основное состояние атома водорода) может быть обнаружен на различных расстояниях от ядра. С наибольшей вероятностью его можно обнаружить на расстоянии, равном радиусу r 1 первой боровской орбиты . Вероятность обнаружения электрона в состоянии 2s максимальна на расстоянии r = 4r 1 от ядра. В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро.

Область пространства, в которой высока вероятность обнаружить электрон, называют подоболочкой или орбиталью. Вид основных типов орбиталей показан на рис.2.

Электрон, занимающий определённую орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь. и четвёртым квантовым числом (спиновым) m s , которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы.

СПИН

В 1925 году Гоуделлит и Уленбек выдвинули предположение, что еще одно квантовое число s, которое должно определять различие двух состояний при одинаковых значениях n и l может быть связано с вращением электрона вокруг своей оси. Действительно если электрон вращается вокруг своей оси, то он должен обладать механическим моментом количества движения s и (поскольку он имеет электрический заряд) магнитным моментом P m . Этот собственный момент количества движения P s получил название спина электрона.

Подобно тому, как орбитальный момент может располагаться под 2l+1 различными углами к выбранной за преимущественное направление координатной оси, а его проекции на это направление могут быть только кратны ћ, спин электрона должен располагаться под 2s+1 углами к этой координатной оси (например OZ).

Его величина , а проекции на эту ось кратны ћ,

то есть .

За преимущественное направление у координатных осей при определении ориентации спина логично принять направление магнитного поля, образуемого за счет орбитального движения электрона, поскольку наличие этого поля должно (даже в отсутствие внешнего магнитного поля) приводить к расщеплению характеризующихся данными значениями квантовых чисел n, l уровней на 2s+1 подуровней.

Для объяснения расщепления каждого уровня на 2 подуровня следует, очевидно, записать равенство 2m S +1=2, то есть принять, что спиновое квантовое число имеет полуцелое значение m S = ½.При этом величина спина оказывается равной , а его проекции на совпадающую с преимущественным направлением координатную ось принимает значение 1/2 и – 1/2 .

Таким образом, спиновое квантовое число принимает ориентацию собственного момента количества движения электрона (спина ) относительно избранного направления Н: вектор может ориентироваться относительно Н лишь так, что его проекция на Н равна:

m S =1/2 m S = – 1/2

Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом m s , которое может быть равно +1/2 и −1/2.

Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем ио качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.

Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так иэлектрона. В квантовой механике в этой задаче следуют классической, идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

Мы сделаем еще идругое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.

В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через ψ (х, у, z , t ). Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что

Здесь т — масса электрона, а V (r)— потенциальная энергия электрона в электростатическом поле протона. Считая на больших удалениях от протона V = 0, можно написать

Волновая функция ψ должна тогда удовлетворять уравнению

Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид

Тогда функция ψ (r) должна быть решением уравнения

где E— некоторое постоянное число (энергия атома).

Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.

Лапласиан в прямоугольных координатах определялся так.

Рассмотрим теперь квантово-механическую теорию атомов. Она сохраняет некоторые аспекты старой теории Бора. Например, электроны могут находиться в атоме только в дискретных состояниях с определенной энергией; при переходе электрона из одного состояния в другое испускается или поглощается фотон. Согласно квантовой механике, не существует определенных круговых орбит электронов , как в теории Бора. В силу волновой природы электрон «размазан» в пространстве , подобно «облаку» отрицательного заряда .

Применим уравнение Шредингера к электрону, находящемуся в атоме водорода.

Решение задачи об энергетических уровнях электрона для водорода, а также водородоподобных систем сводится к задаче о движении электрона в кулоновском поле ядра. Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1), определяется выражением (21.20)

и зависит только от r – расстояния между электроном и протоном, поэтому задачу с таким видом потенциальной энергии обычно решают в сферической системе координат. В общем случае волновая функция является функцией от всех координат и уравнение Шредингера будет иметь вид:

Электрон в атоме находится в потенциальной яме, края которой имеют форму гиперболы (рис.21.5).

Очевидно, что решение этой задачи должно быть подобно решению задачи, когда частица находилась в бесконечно глубокой одномерной потенциальной яме с прямоугольными краями.

Так как электрическое поле – центрально-симметрично, то для решения этого уравнения воспользуемся сферической системой с координатами (r , θ, φ),

Рис.21.5.

которые связаны с декартовыми координатами, как это следует из рис. 21.6, соотношениями: x = r sin θ cos φ; y = r sin θ sin φ; z = r cosθ .

Рис. 21.6

Подставив в (21.23) выражение оператора Лапласа в сферических координатах, получим уравнение Шредингера в следующем виде:

Строгое решение уравнения (21.22) в соответствии с теорией дифференциальных уравнений дает следующие результаты. Электрон в атоме обладает не произвольным значением энергии, а набором определенных отрицательных дискретных значений E n :

, (21.23)

где n главное квантовое число , принимающее значения 1,2,3.…,∞. Из (21.23) следует, что именно главное квантовое число определяет энергию электрона в атоме: E n ~ . Выражение для значений энергий En (21.23) полностью совпадает с результатами теории Бора (19.15). Для атома водорода значение n = 1 соответствует основному состоянию электрона, значение n = ∞ – свободному электрону (E∞ = 0). Отрицательные значения энергии соответствуют связанному состоянию электрона, когда он находится внутри потенциальной ямы и имеет большие отрицательные значения потенциальной энергии (21.20). Положительными значениями энергии электрон обладает в свободном состоянии, когда он покидает пределы атома, и его энергетический спектр становится непрерывным, т.е. область E > 0 соответствует ионизированному атому.


Оказывается, что одному и тому же значению энергии электрона соответствует несколько различных состояний с разными волновыми функциями, соответствующими различным типам движения электрона. Эти типы движения различаются разными значениями орбитального момента импульса и его проекцией на физически выделенное направление Z , совпадающее с направлением вектора напряженности внешнего магнитного поля.

В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции Ψn l m s , определяемые набором четырех квантовых чисел: главного n , орбитального l, магнитного m и спинового m s .

Момент импульса частицы относительно начала координат О (центр орбиты электрона на рис. 21.7) в классической механике определяется векторным произведением , где вектора и являются соответственно радиус-вектором частицы и ее импульсом.

Модуль магнитного момента тока, создаваемого движущимся по орбите электроном, равен . (21.26)

Здесь T – период обращения электрона по орбите, V – его скорость, I − орбитальный ток, S − площадь орбиты.

Магнитный момент обусловлен движением электрона по орбите,

вследствие чего называется орбитальным магнитным моментом электрона.

Электрон обладает массой m e , поэтому при движении по орбите он обладает моментом импульса , модуль которого . (6.25)

Вектор называюторбитальным механическим моментом электрона. Он образует с направлением движения электрона правовинтовую систему. Следовательно, направление векторов и противоположны (рис. 21.7).

Отношение магнитного момента элементарной частицы к ее механическому моменту называется орбитальным гиромагнитным отношением . Для электрона оно равно . (21.26)

Такая связь между векторами сохраняется и в теории Бора. Поскольку направления векторов и противоположны, . (21.27)

В квантовой механике модуль момента импульса движущейся микрочастицы определяется выражением:

(21.28)

Здесь – орбитальное квантовое число . Величина является дискретной (квантовой).

В квантовой механике строго доказывается (это следует из решения уравнения Шредингера), что проекция (L Z) вектора на направление вектора напряженности внешнего магнитного поля , совмещенного с осью Z, может принимать лишь целочисленные значения, кратные постоянной : Lz = . (21.29)

Проекция любого вектора не может быть больше модуля этого вектора, т.е. . Поэтому в соответствии с выражениями (21.28) и (21.29) имеем:

, (21.30)

Следовательно, максимальное значение равно , тогда . При заданном число т принимает значений: , которые образуют спектр проекций на любую выделенную ось , т.е. вектор может принимать (2l + 1) ориентаций в пространстве (рис. 21.8).

Таким образом, квантовое число определяет как модуль момента импульса, так и все возможные значения его проекции на ось . На рис. 6.8 показаны возможные ориентации вектора и его проекции на выделенное направление магнитного поля. Например, когда орбитальное квантовое число (средний рисунок 6.8), то ; 0; .

Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.

Для полного описания атома водорода следовало бы учесть движения обеих частиц - как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина - его орбитальный момент количества движения постоянен.

В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке в момент через . Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что

. (17.2)

Здесь - масса электрона, а - потенциальная энергия электрона в электростатическом поле протона. Считая на больших удалениях от протона , можно написать

Волновая функция должна тогда удовлетворять уравнению

. (17.3)

Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид

. (17.4)

Тогда функция должна быть решением уравнения

, (17.5)

где - некоторое постоянное число (энергия атома).

Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах. Лапласиан в прямоугольных координатах определялся так:

.

Вместо этого мы хотим воспользоваться координатами , , , изображенными на фиг. 17.1. Они связаны с , , формулами точки .

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.