Системы разработки нефтяных залежей. Системы разработки месторождений и оборудования для хранения нефти и газа. Элементы системы разработки и их расчет

Тема 6.5 Геологические основы разработки нефтяных и газовых месторождений

Студент должен

знать: существующие системы разработки месторождений, системы разработки отдельных залежей и условия, влияющие на их выбор, особенности разработки газовых и газоконденсатных месторождений, геологические основы проектирования системы разработки.

Существует несколько систем расположения скважин при разработке месторождения: квадратная и треугольная (рисунок 34).

Считается, что треугольная сетка обеспечивает более равномерный дренаж нефтеносной площади скважин. В настоящее время геометрическая сетка применяется для пластов с большой неоднородностью, при разработке водонефтяных зон, при режимах водо-растворенного газа. В настоящее время можно применять расположение эксплуатационных скважин вдоль (на границе ВНК) напорного контура нефтеносности.

Рисунок 34Сетки расположения

эксплуатационных скважин

а – квадратная; б - треугольная

Большое значение имеет расстояние между забоями скважин:

  • на нефтяных месторождениях - 400 - 600 м, а на крупных до 800м. (в США- 200-600м);
  • на газовых месторождениях - 700 - 2500 м (в США- 150-1000м).

По темпу разбуривания залежи выделяют:

· сплошное бурение - производится в короткие сроки до 1 года;

· замедленная система - в течение нескольких лет.

При замедленном темпе имеет большое значение порядок разбуривания залежи. Разделяют: сгущающуюся и ползущую сетку залежи.

При сгущающейся сетке - в разных частях месторождения бурятся скважины по разряженной сетке, равномерно расположенных по площади. Последующие скважины закладываются на уплотнении первоначальной сетки. Такое повторяется 2-3 раза, пока не достигнут принятого по проекту.

При ползущей сетке - разбуривание начинают с какой-то части пласта до конечной степени уплотнения, затем бурят последующие ряды скважин в направлении от разбуренной части залежи к не разбуренной. Если пласты с высокой неоднородностью, то применяется ползущая сетка.

По характеру размещения скважин различают сетки забоев равномерные и равномерно - переменные.

Равномерные сетки - одинаковые расстояния между забоями скважин.

Равномерно - переменные - расстояние между рядами забоев скважин больше, чем расстояние между забоями в рядах.

При внутриконтурном заводнении чаще применяют равномерно переменную сетку. Расположение скважин рядами - линейное т.к. скважины в равных перемещениях рядах (сетках), забои скважин расположены в шахматном порядке. Если они разделяются на блоки, то расстояния забоев эксплуатационных скважин называются ячеичными.



Замкнутые - ряды, которые имеют вид колец неправильной формы, повторяющей контуры нефтеносности.

Незамкнутые - прямолинейные ряды, пересекают залежь в определенном направлении и обрываются вблизи контура нефтеносности.

Внутри замкнутого ряда нагнетательных скважин располагают не более трех рядов добывающих скважин. Между незамкнутыми разрезающими рядами нагнетательных скважин размещают 5 или 3 незамкнутых ряда добывающих скважин.

Выбор и обоснование системы гидравлической разработки


Под системой открытой разработки месторождения понимается установленный порядок выполнения горно-подготовительных, вскрышных и добычных работ в пределах карьерного поля. Принятая система должна обеспечить планомерную и безопасную разработку месторождения при рациональном использовании его запасов, выполнение требований по охране окружающей среды и восстановлению земель, нарушенных открытыми горными выработками.
Рациональная система открытой разработки должна обеспечивать добычу полезного ископаемого в объеме, соответствующем плану, по качеству, отвечающему нормальным требованиям, максимальное его извлечение из недр, высокую производительность труда и экономичность при максимальной безопасности работ. Таким образом, правильный выбор системы открытой разработки должен обеспечивать высокую эффективность эксплуатации месторождения.
Принятая система открытой разработки предопределяет тип горно-транспортного оборудования, размеры карьера и его основные элементы, а также технико-экономические показатели работы карьера.
В настоящее время известны классификации систем открытых горных работ профессора Е.Ф. Шешко, академиков Н.В. Мельникова и В.В, Ржевского.
Е.Ф. Шешко в основу классификации систем разработки месторождений положил направление перемещения вскрышных пород в отвалы (1947 г.). Акад. Н.В, Мельниковым была предложена классификация систем разработки по способу производства вскрышных работ (1952 г.).
Классификация акад. В.В. Ржевского, в основу которой положены горно-геологические и геометрические предпосылки, характеризует сущность технологии открытых горных работ и облегчает последующий расчет систем разработок (табл. 7.3). В.В. Ржевский в качестве ведущих признаков открытых горных работ принимает направление выемки горной массы в плане и профиле и месторасположения отвалов.

При разработке горизонтальных или пологих залежей по окончании горно-подготовительных работ создается первичный фронт вскрышных и добычных работ карьера; возобновление горно-подготовительных работ возможно при реконструкции карьера. Таким образом, системы разработки в период эксплуатации характеризуются только порядком и последовательностью ведения вскрышных и добычных работ и изменением длины фронта работ или высоты отдельных уступов и размеров рабочих площадок. Такие системы разработки называются сплошными (рис. 7.9).
При разработке наклонных и крутых залежей горно-подготовительные работы ведутся как в период строительства, так и при эксплуатации карьера для создания фронта добычных и вскрышных работ. В состав горно-подготовительных работ в эксплуатационный период входят вскрытие и нарезка новых рабочих горизонтов. Таким образом, системы разработки наклонных и крутых залежей характеризуются порядком выполнения вскрышных, добычных и регулярных горно-подготовительных работ. Такие системы называются углубочными.

Имеются и другие специальные системы открытой разработки месторождений, которые применяются при проектировании открытых горных работ с использованием средств гидромеханизации.
На наш взгляд, классификация систем разработки, приведенная в табл. 7.3, является наиболее применимой, так как она учитывает не только горно-геологические и геометрические параметры месторождения, но и те признаки, которые указаны в других классификациях.
Исходными данными для обоснования системы разработки являются сведения о месторождении и карьерном поле.
Наибольшее применение при использовании гидромеханизации получила группа сплошных систем, ввиду незначительной мощности покрывающих пород: разработка вскрыши и россыпных месторождений гидромониторно-землесосными комплексами; разработка обводненных песчано-гравийных месторождений земснарядами (рис. 7.10).
Эти системы применяются в основном при разработке горизонтальных и пологих месторождений с небольшой мощностью вскрыши и полезного ископаемого.
Применение гидромеханизации при углубочных системах разработки ограничивается крепостью разрабатываемых пород, за исключением отработки четвертичных пород на передовых уступах.

Элементы системы разработки и их расчет


Основными элементами системы разработки являются: высота уступа, угол откоса уступа и бортов, ширина заходок, ширина рабочей площадки, длина фронта работ на уступе, длина и число блоков на уступе, скорость подвигания забоя и фронта горных работ и др. (рис. 7.11).
Высота уступа определяется с учетом физико-механических свойств пород, применяемого оборудования, мощности карьера, безопасности работ. Анализ полученных решений, проведенный автором, показал, что рациональная высота уступа при гидромониторном размыве по условию безопасного ведения работ и минимальных затрат составляет около 30 м. Затраты на разработку 1 м3 породы при увеличении высоты уступа с 10 до 25 м и с 25 до 35 м уменьшаются соответственно на 35-50 и 4-5 % (рис. 7.12).

Увеличение высоты уступа дает значительные экономические преимущества: уменьшается число уступов в карьере, благодаря чему сокращается общая длина трубопроводов, снижается стоимость их монтажа и обслуживания; повышается производительность землесосных установок, так как уменьшается число их передвижек в забое; уменьшаются объем недомыва и время, затрачиваемое на подрезку уступа, на 1 м3 разрабатываемой породы.
В то же время при увеличении высоты уступа по требованию техники безопасности увеличивается расстояние от гидромонитора до откоса уступа, ухудшается качество струи и снижается эффективность размыва.
Ширина рабочей площадки уступа определяется главным образом шириной и числом гидромониторных заходок.
При разработке четвертичных отложений наименьшую ширину рабочей площадки, м, можно приближенно определить по выражениям:
- при продольных заходках (рис. 7.13, а)

- при поперечных заходках (рис. 7.13, б)

где Aз - ширина заходки землесосной установки, м,

где Aг - ширина заходки гидромонитора, м; n - число гидромониторных заходок; С - расстояние от нижней бровки разрабатываемого уступа до полосы укладки труб, м; Вт - ширина полосы укладки труб (зависит от числа параллельно уложенных труб), м; Вт.т - расстояние от полосы укладки труб до транспортной (автомобильной) полосы (Bт.т = 1,5 м); T - ширина транспортной полосы (для автотранспорта T=4,5 м); Z - ширина призмы возможного обрушения (ширина полосы безопасности), м,

где αн - угол откоса нерабочего борта уступа (αн = 45*60°), град; αр - угол откоса рабочего борта уступа (αр = 60*80°), град; lmin - минимальное расстояние гидромонитора от забоя уступа [см. формулу (7.23)], м; Bз - ширина зумпфа (Bз = 12 м); Bз.у - ширина места расположения забойной землесосной установки (Вз.у = 10 м).
Длина фронта работ уступа Lф.у равна длине полной заходки (длине уступа). Часть уступа по длине, отрабатываемая одной гидроустановкой, называется блоком фронта работ. Длина блока Lб зависит от длины фронта работ уступа и числа гидроустановок, расположенных на уступе (при продольных заходках) (см. рис. 7.2, 7.13). Часть блока, разрабатываемая с одной стоянки забойной землесосной станции, называется картой. Длина карты Lк зависит от уклона пульпоотводной канавы i и принятой высоты недомыва породы hн уступа. Ширина и длина карты определяются шагом передвижки и шириной заходки гидроустановки. Число блоков в пределах одного уступа определяется по формуле

Фронт работ карьера составляет суммарную протяженность фронтов работ отдельных уступов. Фронт вскрышных и добычных работ в процессе эксплуатации карьера непрерывно перемещается к его конечным контурам.
Интенсивность отработки месторождения характеризуется скоростью подвигания фронта работ за год. Скорость подвигания фронта горных работ на гидровскрыше зависит от мощности полезного ископаемого, производственной мощности карьера и режима работы средств гидромеханизации и может составлять от 60 до 400 м.
Высокие темпы подвигания фронта горных работ достигаются при разработке маломощных горизонтальных пластов полезного ископаемого. Меньшее подвигание фронта работ имеет место при отработке наклонных и крутонаклонных залежей.
Уступы на вскрыше и добыче при круглогодовом режиме работ должны отрабатываться с одинаковым годовым подвиганием.

При сезонном режиме работы гидромеханизации скорость подвигания на гидровскрыше будет равна частному от деления скорости подвигания фронта работ на нижерасположенных уступах на коэффициент сезонности.
Скорость подвигания фронта горных работ, м/год,

где Qг.в - годовой объем пород на гидровскрыше, м3; Hр.з - высота рабочей зоны, отрабатываемой средствами гидромеханизации (Нр.з = Hуnу), м; Hу - высота разрабатываемого уступа, м; ny - число разрабатываемых уступов.
Скорость подвигания забоя гидроустановки, м/сут,

где Qс.з - суточная производительность землесосной установки по породе, м3.
Перемещение фронта вскрышных и добычных работ может быть чаще всего параллельное продольное, параллельное поперечное, веерное и смешанное (рис. 7.14), что соответствует принятой системе разработки (см. табл. 7.4).

Введение

Система разработки месторождений

1 Система разработки многопластовых месторождений. Выделение эксплуатационных объектов

2 Системы одновременной разработки объектов

3 Системы последовательной разработки объектов

Системы разработки эксплуатационных объектов (залежей)

2.1 Системы разработки с размещением скважин по равномерной сетке

2 Системы разработки с размещением скважин по неравномерной сетке

Рациональная система разработки

Резервуары для хранения нефти

1 Классификация резервуаров

5. Краткая характеристика резервуаров различного типа

5.1 Железобетонные резервуары

2 Резервуары вертикальные стальные (РВС)

5.3 Резервуары вертикальные стальные типа РВС низкого давления

4 Резервуары вертикальные стальные типа РВС высокого давления

5 Резервуары с плавающей крышей и с понтонами

6 Горизонтально-цилиндрические резервуары (РГС)

7 Каплевидные резервуары

8 Шаровые резервуары

Заключение

Список использованной литературы

Введение

Система разработки - это совокупность технико-технологических и организационных взаимосвязанных инженерных решений, направленных на перемещение нефти (газа) в продуктивных пластах к забоям добывающих скважин. Система разработки включает последовательность и темп разбуривания залежи; число, соотношение, взаимное расположение нагнетательных, добывающих, специальных (контрольных и др.) скважин, очередность их ввода; мероприятия и методы по воздействию на продуктивные пласты с целью получения заданных темпов извлечения углеводородов; мероприятия по контролю и регулированию процесса разработки залежей. Разработка нефтяного месторождения должна вестись по системе, обеспечивающей наилучшее использование природных свойств нефтяного пласта, режима его работы, технологии и техники эксплуатации скважин и других объектов и сооружений при обязательном соблюдении норм охраны недр и окружающей среды.

Система разработки залежи должна обеспечить непрерывный контроль и регулирование процесса разработки месторождения с учетом новых сведений о геологическом строении, получаемых при разбуривании и эксплуатации залежи. Для получения информации об объекте разработки, об условиях и интенсивности притока флюидов в скважину, об изменениях, происходящих в пласте в процессе его разработки предназначены методы исследования скважин и пластов.

Сбор добываемой нефти - это процесс транспортирования по трубопроводам нефти, воды и газа от скважин до центрального сборного пункта. Для накопления, кратковременного хранения и учета нефти предназначены нефтяные резервуары. Основным требованием, предъявляемым к резервуарам, является надежность.

Целью исследования данной работы является изучение методов системы разработки месторождений, определение рациональной системы извлечения нефти из недр, выбор оборудования для хранения нефти после добычи из залежей и транспортировки.

Задачи исследования:

Изучить системы разработки месторождений и оборудование для хранения нефти и газа.

1. Система разработки месторождений

Под системой разработки нефтяных месторождений и залежей понимают форму организации движения нефти в пластах к добывающим скважинам. Система разработки включает комплекс технологических и технических мероприятий, обеспечивающих управление процессом разработки залежей нефти и направленных на достижение высокой выработки запасов нефти из продуктивных пластов при соблюдении условий охраны недр. Система разработки нефтяных месторождений определяет: порядок ввода эксплуатационных объектов многопластового месторождения в разработку; сетки размещения скважин на объектах и их число; темп и порядок ввода их в работу; способы регулирования баланса и использования пластовой энергии.

Следует различать системы разработки многопластовых месторождений и отдельных залежей (однопластовых месторождений.)

1 Система разработки многопластовых месторождений. Выделение эксплуатационных объектов

В многопластовом месторождении выделяется несколько продуктивных пластов. Продуктивный пласт может разделяться на пропластки, прослои пород-коллекторов, которые развиты не повсеместно. Надежно изолированный сверху и снизу непроницаемыми породами отдельный пласт, а также несколько пластов, гидродинамически связанных между собой в пределах рассматриваемой площади месторождения или ее части, составляют элементарный объект разработки.

Эксплуатационный объект (объект разработки) - это элементарный объект или совокупность элементарных объектов, разрабатываемых самостоятельной сеткой скважин при обеспечении контроля и регулирования процесса их эксплуатации.

Эксплуатационные объекты выделяют на основе геологического, технологического и экономического анализов в период проектирования разработки. При решении вопросов выделения эксплуатационных объектов рекомендуется учитывать следующее: диапазон нефтегазоносности по разрезу (толщину продуктивного разреза); число продуктивных пластов в разрезе; глубину залегания продуктивных пластов; толщину промежуточных непродуктивных пластов и наличие зон слияния продуктивных пластов; положение водонефтяных контактов по пластам; литологическую характеристику продуктивных пластов; коллекторские свойства (особенно проницаемость и эффективную толщину), диапазон их изменения; различие типов залежей по пластам; режимы залежей и возможное их изменение; свойства нефти в пластовых и поверхностных условиях; запасы нефти по пластам.

Если эти условия не препятствуют совмещению пластов в единый объект, то проводят гидродинамические расчеты по определению технологических показателей с учетом способов регулирования баланса пластовой энергии, контроля и регулирования процесса разработки, а также технических средств добычи нефти. Затем определяют экономическую эффективность различных вариантов сочетания отдельных пластов в эксплуатационные объекты. Научно обоснованное выделение эксплуатационных объектов служит важным фактором экономии и повышения эффективности разработки.

В зависимости от порядка ввода эксплуатационных объектов в разработку выделяют две группы систем разработки многопластового нефтяного месторождения:

· системы одновременной разработки объектов;

· системы последовательной разработки объектов.

1.2 Системы одновременной разработки объектов

Преимущество систем одновременной разработки объектов - это возможность использования запасов всех объектов после их разбуривания. Реализовать эти системы можно по одному из вариантов:

· раздельная разработка, когда каждый объект эксплуатируется самостоятельной сеткой скважин. Требует большого числа скважин, что приводит к значительным капитальным вложениям. Может применяться при наличии высокопродуктивных объектов и возможности быстрого их разбуривания. Ее преимущество - обеспечение надежного контроля за процессом разработки и его регулирования.

· совместная разработка, при которой два или более пластов в виде единого эксплуатационного объекта разрабатываются единой сеткой добывающих и нагнетательных скважин. Возможны ее подварианты: с увеличением числа добывающих скважин на малопродуктивные объекты и с увеличением числа нагнетательных скважин на малопродуктивные объекты. Ее преимущество - обеспечение высоких текущих уровней добычи при заданном числе скважин. Однако в основном наблюдается нерегулируемая разработка пластов, что приводит к ухудшению технико-экономических показателей.

· совместно-раздельная разработка, при которой добывающие скважины оборудуют установками для одновременно-раздельной эксплуатации, нагнетательные скважины - установками для одновременно-раздельной закачки воды. Она позволяет преодолеть недостатки первых двух вариантов, сохраняя при этом их преимущества.

3 Системы последовательной разработки объектов

Системы последовательной разработки объектов можно реализовать по следующим основным вариантам:

· разработка сверху вниз, при которой каждый нижележащий объект эксплуатируется после вышележащего. Она применялась в первый период развития нефтяной промышленности и в настоящее время признана в основном нерациональной, так как задерживает разведку и разработку нижележащих объектов, увеличивает объем бурения и расход металла на обсадные трубы, повышает опасность нарушения правил охраны недр вышележащих объектов при разбуривании нижележащих объектов.

· разработка снизу вверх, при которой начинают разрабатывать объекты с нижнего, так называемого опорного объекта, а затем переходят на возвратные объекты. При наличии многих объектов в качестве опорных также выбирают наиболее изученные и высокопродуктивные объекты с достаточно большими запасами нефти, а в качестве возвратных - остальные объекты. Тогда приступают к разработке опорных объектов, тем самым не задерживают эксплуатацию вышележащих продуктивных объектов с большими запасами.

Нужно отметить, что лучшие показатели могут быть достигнуты комбинацией всех перечисленных выше вариантов систем разработки многопластового месторождения.

2. Системы разработки эксплуатационных объектов (залежей)

Системы разработки залежей классифицируют в зависимости от размещения скважин и вида энергии, используемой для перемещения нефти.

Под размещением скважин понимают сетку размещения и расстояние между скважинами (плотность сетки), темп и порядок ввода скважины в работу.

Системы разработки подразделяют:

· с размещением скважин по равномерной сетке

· с размещением скважин по неравномерной сетке (преимущественно рядами).

1 Системы разработки с размещением скважин по равномерной сетке

Системы разработки с размещением скважин по равномерной сетке различают: по форме сетки; по плотности сетки; по темпу ввода скважины в работу; по порядку ввода скважин в работу относительно друг друга и структурных элементов залежи.

Сетки по форме бывают квадратными и треугольными.

Под плотностью сетки скважин подразумевают отношение площади нефтеностности к числу добывающих скважин.

По темпу ввода скважин в работу можно выделить одновременную (сплошную) и замедленную системы разработки залежей.

В первом случае темп ввода скважин в работу быстрый - все скважины вводят в работу почти одновременно в течение одного-трех лет разработки объекта.

Замедленной называют систему при большом сроке ввода.

По порядку ввода в работу различают системы сгущающуюся и ползучую.

На объектах со сложным геологическим строением применяют сгущающуюся систему. Ползучую систему, ориентированную по отношению к структуре пласта, подразделяют на системы: вниз по падению; верх по восстанию; по простиранию.

2 Системы разработки с размещением скважин по неравномерной сетке

Системы разработки с размещением скважин по неравномерной сетке аналогично различают: по плотности сетки; по темпу ввода скважины в работу (ввода рядов скважин); по порядку ввода скважин в работу. Дополнительно их разделяют:

· по форме рядов - с незамкнутыми рядами и замкнутыми (кольцевыми) рядами;

В зависимости от вида энергии, используемой для перемещения нефти, различают:

· системы разработки нефтяных залежей при естественных режимах (используется естественная пластовая энергия);

· система разработки с поддержанием пластового давления (применяются методы регулирования баланса пластовой энергии путем искусственного ее пополнения).

По методам регулирования баланса пластовой энергии выделяют:

· системы разработки с искусственным заводнением пластов;

· системы разработки с закачкой газа в пласт.

Системы разработки с искусственным заводнением пластов могут осуществляться по следующим основным вариантам:

Законтурное заводнение- воду закачивают в ряд нагнетательных скважин, расположенных за внешним контуром нефтеносности на расстоянии 100-1000 метров.

Приконтурное заводнение - нагнетательные скважины размещают в водонефтяной зоне в непосредственной близости от внешнего контура нефтеносности.

Внутриконтурное заводнение - применяют на объектах с большими площадями нефтеносности, при необходимости сочетается с законтурным или приконтурным заводнением.

Сводовое заводнение - ряд нагнетательных скважин размещают на своде структуры или вблизи его. Это заводнение сочетают с законтурным.

Очаговое заводнение - применяется в качестве самостоятельного в резко неоднородных и прерывистых пластах, а так же в сочетании с законтурным и особенно внутриконтурным заводнением.

Площадное заводнение - рассредоточенная закачка воды в залежь по всей площади ее нефтеносности.

Система разработки с закачкой газа в пласт применяется по двум основным вариантам: закачка газа в повышенные части залежи (в газовую шапку); площадная закачка газа. Успешная закачка газа возможна лишь при значительных углах наклона однородных пластов, невысоком пластовом давлении, близости значений пластового давления и давления насыщенности нефти газом или наличии естественной газовой шапки, малой вязкости нефти. По экономической эффективности она значительно уступает заводнению, поэтому в применении ограничена.

3. Рациональная система разработки

Для одного и того же месторождения можно назвать множество систем, отличающихся по числу добывающих скважин, по их расположению на структуре, по методу воздействия на продуктивные пласты и т. д., поэтому существует необходимость сформулировать понятие рациональной системы разработки. В качестве критериев рациональной системы разработки принимаются следующие основные положения.

· Рациональная система разработки должна обеспечить наименьшую степень взаимодействия между скважинами.

Минимальное взаимодействие между скважинами достигается увеличением расстояния между ними. С другой стороны, при увеличении расстояния между скважинами общее их число на месторождении уменьшается, что ведет к снижению суммарного дебита скважин. Кроме того, в условиях неоднородного пласта увеличение расстояния между скважинами может привести к тому, что часть нефтенасыщенных линз, полу линз или пропластков не будет охвачено скважинами и они не будут приобщены к разработке. Таким образом, наименьшее взаимодействие между скважинами не может служить единственным всеохватывающим критерием рациональности системы разработки.

· Рациональная система должна обеспечить наибольший коэффициент нефтеотдачи.

Максимальную нефтеотдачу можно достигнуть при полном охвате нефтепродуктивного пласта процессом вытеснения. Это условие, особенно в неоднородных пластах, можно выполнить при более тесном размещении скважин. Кроме того, так как наиболее высокие коэффициенты достигаются при водонапорном режиме, а естественные притоки воды чаще не обеспечивают высоких темпов разработки, то существует необходимость создания искусственного водонапорного режима закачкой воды или газа в пласт.

· Рациональная система разработки должна обеспечить минимальную себестоимость нефти.

Из рассмотренных в процессе проектирования нескольких вариантов разработки выбирается вариант, обеспечивающий наивысшую нефтеотдачу. Названные выше критерии хотя и правильно определяют ориентиры для выбора системы разработки, тем не менее, ни один из них не может быть принят за определяющий, так как они не учитывают потребность в добыче нефти. Поэтому, понятие рациональной системы разработки в окончательном виде формулируется так: рациональная система разработки должна обеспечить заданную добычу нефти при минимальных затратах и возможно больших коэффициентах нефтеотдачи.

Проектирование разработки заключается в подборе такого варианта, который бы отвечал требованиям рациональной системы разработки.

Приступая к проектированию разработки последовательно определяются исходные геолого-физические данные о нефтепродуктивном пласте и свойствах насыщающих его жидкостей и газов; выполняются гидродинамические расчеты по установлению технологических показателей разработки по нескольким вариантам, отличающимся по числу скважин, методу воздействия на продуктивные пласты, условиям эксплуатации скважин и т. д.; рассчитывается экономическая эффективность вариантов разработки; анализируются экономические и технологические показатели разработки и выбирается вариант рациональной системы разработки.

Внедрение рациональной системы разработки позволяет добиться высоких технико-экономических показателей при разработке месторождений.

Поскольку разработка месторождения начинается с отбора нефти из первых разведочных скважин, то можно отметить, что система разработки динамична и должна непрерывно совершенствоваться во времени.

4. Резервуары для хранения нефти

Добываемая нефть - смесь нефти, газа, менерализованной воды, механических примесей и других попутных компонентов - должна быть собрана и рассредоточена на большой территории скважин и обработана как сырье для получения товарной продукции - товарной нефти, нефтяного газа, а так же пластовой воды, которую можно было бы снова возвращать в пласт.

Сбор добываемой нефти - это процесс транспортирования по трубопроводам нефти, воды и газа от скважин до центрального сборного пункта. Для накопления, кратковременного хранения и учета нефти предназначены нефтяные резервуары.

1 Классификация резервуаров

Резервуары для хранения нефти и нефтепродуктов могут быть подразделены по следующим признакам:

· по материалу, из которого они изготовлены - металлические, железобетонные, земляные, синтетические и в горных выработках;

· по конструкции - вертикальные цилиндрические с коническими, плавающими и сферическими крышами, с понтонами (в основном типа РВС), горизонтальные цилиндрические с плоскими и пространственными днищами (типа РГС), каплевидные, резервуары-цилиндроиды, прямоугольные и траншейные;

· по значению избыточного давления - резервуары низкого (ри < = 0,002 МПа) и резервуары высокого (ри > 0,002 МПа) давления;

· по назначению - сырьевые; технологические; товарные.

Сырьевые резервуары предназначены для хранения обводненной нефти. В технологических резервуарах осуществляется предварительный сброс пластовой воды. Товарные резервуары предназначены для хранения обезвоженной и обессоленной нефти.

В зависимости от расположения по вертикали по отношению к прилегающей территории резервуары делят на наземные, подземные и полуподземные. Наземными называют резервуары, у которых днище находится на одном уровне или выше наинизшей планировочной отметки прилегающей площадки. Подземными называют резервуары, когда наивысший уровень нефти в них находится не менее чем на 0,2 м ниже наинизшей планировочной отметки прилегающей площадки, а также резервуары, имеющие обсыпку не менее чем на 0,2 м выше допустимого наивысшего уровня нефти в резервуаре и шириной не менее 3 м. Полуподземными называют резервуары, днище которых заглублено не менее чем на половину его высоты, а наивысший уровень нефти находится не выше 2 м над поверхностью прилегающей территории.

Каждый действующий резервуар должен постоянно иметь полный комплект соответствующего оборудования, предусмотренного проектом, и находиться в исправном рабочем состоянии. Разукомплектация в процессе эксплуатации не допускается.

На резервуаре установлено следующее оборудование, отвечающее требованиям стандартов и предназначенное обеспечить надежную эксплуатацию резервуара:

· дыхательные клапана;

· предохранительные клапана;

· огневые предохранители;

· приборы контроля и сигнализации (уровнемеры, сигнализаторы уровня, сниженные пробоотборники ПОР, манометры давления газовой среды;

· хлопушки;

· противопожарное оборудование;

· оборудование для подогрева;

· приемо-раздаточные патрубки;

· зачистной патрубок;

· вентиляционные патрубки;

· люки-лазы;

· люк световой;

· люк замерный.

Горизонтальные резервуары оснащаются дополнительно стационарно встроенным оборудованием: подогревателями нефти; лестницами; измерительными трубами и другими необходимыми устройствами.

Основным требованием, предъявляемым к резервуарам является надежность. Надежность резервуаров - это свойство их конструкции выполнять функции приема, хранения и отпуска из них нефти и нефтепродуктов при заданных параметрах.

Критериями надежности резервуаров являются: работоспособность, безотказность и долговечность. Работоспособность - это состояние, при котором резервуар способен выполнять свои функции. Для поддержания работоспособности резервуаров необходимо выполнять в установленные сроки текущие и капитальные ремонты, а также осуществлять профилактику и раннюю диагностику дефектов. Безотказность - это свойство резервуара сохранять работоспособность без вынужденных перерывов в работе. Долговечность - это свойство резервуара сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов. Показателем долговечности является срок службы.

5. Краткая характеристика резервуаров различного типа

1 Железобетонные резервуары

Нормальный ряд железобетонных резервуаров по их форме и объему включает в себя: цилиндрические резервуары для нефти объемом 1, 3, 5, 10, 20, 30 и 40 тыс. м 3 ; прямоугольные резервуары для нефти объемом 0,1; 0,25; 0,5; 1, 2 и 3 тыс. м 3 .

Рисунок 1. Общий вид сборного железобетонного цилиндрического резервуара. (1 - боковые панели; 2 - центральная опорная колонна;3 - периферийная опорная колонна;4 - металлическая облицовка;5 - монолитное железобетонное днище;6 - крыша).

месторождение нефть газ резервуар

Сырая нефть и мазут не оказывают химического воздействия на бетон и кальматируют поры в бетоне, тем самым увеличивая непроницаемость резервуаров.

Для создания избыточного давления и уменьшения потерь в резервуарах до 200 мм вод. ст. должны предусматриваться конструктивные решения по повышению газонепроницаемости покрытия, такие как: устройство водяного экрана со слоем воды 100-150 мм на покрытии резервуара; укладка на покрытие ковра из резинотканевых или синтетических материалов с последующей засыпкой сверху слоем земли толщиной 20-25 см; герметизация покрытия тонколистовой сталью, нанесение на внутреннюю поверхность покрытия изоляции из различных растворов и мастик.

Подземные ЖБР обладают большой плавучестью и при подъеме уровня грунтовых вод это может привести к всплытию резервуара и к его аварии. Для предохранения от всплытия производят утяжеление днища резервуара, его анкеровку или вынос из зоны грунтовых вод с устройством обсыпки грунтом.

2 Резервуары вертикальные стальные (РВС)

Вертикальные стальные цилиндрические резервуары низкого давления со щитовой конической или сферической кровлей, так называемые атмосферные резервуары, являются наиболее распространенными для хранения нефти. Они относительно просты в изготовлении и наиболее экономичны по стоимости.

Различают вертикально-цилиндрические резервуары низкого и высокого давления, с плоским и пространственными днищами, с плавающими крышами и с понтонами.

Применение крыши резервуара той или иной конструкции диктуется свойствами хранимых нефтепродуктов и климатическими условиями.

3 Резервуары вертикальные стальные типа РВС низкого давления

Давление в таких резервуарах мало отличается от атмосферного, поэтому их корпус рассчитывается на гидростатическое давление.

Настил покрытия монтируется и сваривается из отдельных листов непосредственно на резервуаре.

Резервуары объемом 10, 20, 30 и 50 тыс. м 3 для хранения нефти с плотностью до 0,9 т/м 3 монтируют из отдельных рулонов корпуса, днища и щитов, которые образуют сферическую форму перекрытия.

Щиты опираются на кольцо жесткости корпуса и центральное кольцо.

Рисунок 2. Общий вид РВС-10000

Весьма ответственным элементом является фундамент под резервуар. Резервуары вместимостью до 5000 м 3 (включительно) устанавливаются на искусственном основании нормального типа, состоящем из грунтовой подсыпки, песчаной подушки и гидроизоляционного слоя. Для предохранения металла днища резервуара от коррозии грунтовыми водами и от конденсата поверх песчаной подушки устраивают гидроизолирующий слой толщиной 100 мм, состоящий из 90% супесчаного грунта и 10% вяжущего вещества (битум, мазут, каменноугольный деготь). Для резервуаров объемом 10000 м 3 и более предусматривается железобетонное кольцо шириной 1 м и толщиной 20-30 см под узлом сопряжения корпуса резервуара с днищем. За осадкой основания каждого резервуара должно быть установлено систематическое наблюдение.

4 Резервуары вертикальные стальные типа РВС высокого давления

Резервуары высокого давления предназначены для хранения нефти с высоким давлением насыщенных паров. Они имеют цилиндрический корпус, сферическую кровлю и плоское днище.

Рисунок 3. Вертикальный цилиндрический резервуар высокого давления (1 - корпус; 2 - сферическое покрытие; 3 - кольцо сопряжения цилиндрического корпуса со сферической поверхностью покрытия; 4 - днище; 5 - анкерные крепления;6- верхнее кольцо жесткости; 7 - анкерная консоль; 8 - нижнее кольцо жесткости; 9 - стенка; 10 - анкерный болт; 11 - бетонная плита.)

Во избежание возможного поднятия периферийной части днища под действием избыточного давления нижний пояс корпуса закрепляется в грунте при помощи анкерных болтов и железобетонных плит. Крепление анкерных болтов к стенке резервуара осуществляется посредством приваренных консолей.

Для восприятия ветровой нагрузки и вакуума корпус резервуара (верхние пояса) должен быть усилен кольцами жесткости.

5 Резервуары с плавающей крышей и с понтонами

Эти резервуары применяют для снижения потерь нефти от испарения.

Понтон сооружают в резервуарах со стационарной щитовой кровлей, которая предохраняет от попадания атмосферных осадков на поверхность понтона. Понтоны в резервуарах бывают как металлические, так и из синтетических материалов.

Плавучесть металлического понтона обеспечивается устройством на нем по контуру герметических коробов или открытых отсеков.

По окружности понтона между понтоном и стенкой резервуара для уменьшения до минимума площади испарения устанавливается уплотняющий затвор. Затвор может быть жесткий или мягкий. Мягкие затворы выполняются из прорезиненной ткани, пенополиуретана и других материалов. Жесткие затворы состоят из металлических элементов рычажного типа.

Особенно целесообразно применение этих резервуаров для сернистых нефти, т.к. ввиду отсутствия газового пространства коррозия от разложения сернистых соединений практически отсутствует.

Плавающая крыша выполняется из стальных листов толщиной не менее 4 мм, с диаметром на 400 мм меньше, чем внутренний диаметр резервуара.

Плавающая крыша обычно бывает двух типов: двойная понтонная, состоящая из ряда герметических отсеков, обеспечивающих непотопляемость при нарушении герметичности понтона; одинарная с центральным диском из стальных листов, по периферии которого располагается кольцевой понтон, разделенный радиальными перегородками на герметические отсеки, препятствующие потоплению крыши.

При эксплуатации резервуаров с плавающей крышей в зимнее время необходимо: тщательно осматривать затворы перед началом закачки или откачки и в случае примерзания их к корпусу резервуара осторожно отрывать их с помощью деревянного клина; не допускать односторонней снеговой нагрузки (излишки снега следует удалять при нахождении крыши в верхнем крайнем положении).

Рисунок 4. Резервуар с плавающей крышей(1 - затвор; 2 - плавающая крыша; 3 - передвижная шарнирная лестница;4 - предохранительный клапан; 5 - дренажная система для отвода атмосферных вод; 6 - труба для отбора проб; 7 - опорные стойки; 8 - замерный люк).

5.6 Горизонтально-цилиндрические резервуары (РГС)

Эти резервуары получили широкое применение для хранения нефти в малых количествах. Преимущества горизонтальных резервуаров заключаются в возможности серийного изготовления их на заводах, в хранении нефти под высоким избыточным давлением и вакуумом, в удобстве подземной установки. Объемы РГС от 3 до 200 м 3 . Рабочее давление до 2,5 Мпа и вакуум до 0,09 Мпа. Днище резервуаров выполняются сферическими, плоскими или цилиндрическими. Для высоких давлений применяются сферические днища.

Резервуары оборудуют металлическими площадками и лестницами для обслуживания, а при хранении вязких нефти, требующих подогрева, - секционными подогревателями. При надземной установке резервуар устанавливают на две седловидные опоры шириной 300-400 мм из сборных бетонных блоков или монолитного бетона. При подземной установке резервуар следует укладывать на спрофилированную песчаную подушку толщиной не менее 200 мм с углом охвата песчаной подушкой 900. При наземной установке, кроме того, между песчаной подушкой и резервуаром должен быть уложен слой гидрофобного песка толщиной 100 мм.

5.7 Каплевидные резервуары

Их основное назначение - хранение нефтей с высоким давлением насыщенных паров под избыточным давлением 0,4 кГс/см 2 и вакуумом до 500 мм вод. ст., что позволяет значительно сократить потери от испарения по сравнению с "атмосферными" резервуарами. Однако стоимость цилиндрического "атмосферного" резервуара значительно меньше каплевидного того же объема. Поэтому непременным условием широкого внедрения каплевидных резервуаров является его экономичность, которая определяется сравнением дополнительной стоимости и экономии от сокращения потерь за период амортизации.

8 Шаровые резервуары

Это резервуары повышенного давления предназначенные для хранения нефтей с высоким давлением насыщенных паров и сжиженных газов (рисунок 6).

Рисунок 5. Шаровой резервуар (1 - узел дыхательной арматуры; 2 - поплавковый указатель уровня; 3 - совмещенный узел для замера уровня, температуры нефти и отбора пробы;4 - запорная арматура; 5 - приемный и раздаточный патрубки; 6 - дренажный кран).

Материалом служит низколегированная сталь.

Объем резервуаров: 300, 600, 900, 2000 и 4000 м 3 .

Заключение

Разработка и эксплуатация нефтяных и газовых месторождений включает в себя научно обоснованный производственный процесс извлечения из недр, содержащихся в них углеводородов и сопутствующих им полезных ископаемых; процесс проектирования систем разработки нефтяных и газовых залежей, взаимное расположение забоев добывающих, нагнетательных, резервных и других скважин, разбуривание месторождения в соответствии с утверждённой технологической документацией, выработку запасов нефти и газа.

Успешная разработка нефтяных и газовых месторождений определяется тем, насколько правильно будет выбрана система разработки. В процессе разработки возникает необходимость контролировать и уточнять состояние залежей с учетом новых сведений о геологическом строении, получаемых при их разбуривании и эксплуатации.

Следует отметить, что для одного и того же месторождения можно назвать множество систем, отличающихся по числу добывающих скважин, по их расположению на структуре, по методу воздействия на продуктивные пласты и т. д., поэтому существует необходимость применения рациональной системы разработки.

Все, что выходит из скважин - нефть с попутным газом, водой и прочими примесями - замеряют, определяя процент воды и попутного газа. Технологические процессы подготовки нефти для всех систем сбора аналогичны: сепарация или разделение фаз, деэмульсация продукции, обессоливание, стабилизация нефти.

После стабилизации нефть направляется в технологические резервуары, где происходит дальнейшее отделение нефти от воды, а оттуда следует в товарные резервуары РВС. Нефтяные резервуары представляют собой емкости, предназначенные для накопления, кратковременного хранения и учета сырой и товарной нефти. Наибольшее применение нашли резервуары типа РВС (резервуар вертикальный стальной).

Основным требованием, предъявляемым к резервуарам является надежность. Критериями надежности резервуаров являются: работоспособность, безотказность и долговечность. Работоспособность - это состояние, при котором резервуар способен выполнять свои функции. Для поддержания работоспособности резервуаров необходимо выполнять в установленные сроки текущие и капитальные ремонты, а также осуществлять профилактику и раннюю диагностику дефектов. Безотказность - это свойство резервуара сохранять работоспособность без вынужденных перерывов в работе. Долговечность - это свойство резервуара сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов. Показателем долговечности является срок службы.

Список использованной литературы

1. Контроль за разработкой нефтяных и газовых месторождений/ пособие для самостоятельного изучения для слушателей курсов повышения квалификации специальности "Геофизика" / Казань: Казанский государственный университет / В.Е. Косарев / 2009.

Оператор обезвоживающей и обессоливающей установки / М. Недра / Каштанов А.А., Жуков С.С. / 1985.

Разработка и эксплуатация нефтяных месторождений: учебник для вузов / М.: Недра / Бойко В.С. / 1990.

Разработка нефтяных и газовых месторождений / учебное пособие / Покрепин Б.В.

Разработка и эксплуатация нефтяных и газовых месторождений/ учебно-методическое пособие / Пермь: Изд-во Перм. нац. исслед. политехн. ун-та / И.Р. Юшков, Г.П. Хижняк, П.Ю. Илюшин / 2013.

Справочное руководство по проектированию разработки и эксплуатации нефтяных и газовых месторождений. / М.: Недра / Гиматудинов Ш.К., Борисов Ю.П., Рлзенберг М.Д. / 1983.

Справочник нефтепереработчика / М., Недра Ластовин Г.А., Радченко Е.Д., Рудина М.Г / 1986.

Технологические основы технологии / М.: Металлургия / И.М. Глущенко. ГИ. / 1990.

Эксплуатация нефтяных и газовых скважин. / М: Недра / Муравьев В.М. / 1978.

Аннотация: Разработка месторождений полезных ископаемых – система организационно – технических мероприятий по добыче полезных ископаемых из недр.

Разработка месторождений полезных ископаемых – система организационно – технических мероприятий по добыче полезных ископаемых из недр. Разработка нефтяных и газовых месторождений осуществляется с помощью буровых скважин. Иногда применяется шахтная добыча нефти (Ярегское нефтяное месторождение, Республика Коми).

Под системой разработки нефтяных месторождений и залежей понимают форму организации движения нефти в пластах к добывающим скважинам.

Систему разработки нефтяных месторождений определяют:

  • порядок ввода эксплуатационных объектов многопластового месторождения в разработку;
  • сетки размещения скважин на объектах, темп и порядок ввода их в работу;
  • способы регулирования баланса и использования пластовой энергии.

Следует различать системы разработки многопластовых месторождений и отдельных залежей (однопластовых месторождений).

Объект разработки – один или несколько продуктивных пластов месторождения, выделенных по геолого-техническим условиям и экономическим соображениям для разбуривания и эксплуатации единой системой скважин.

При выделении объектов следует учитывать:

  • геолого-физические свойства пород-коллекторов;
  • физико-химические свойства нефти, воды и газа;
  • фазовое состояние углеводородов и режим пластов;
  • технику и технологию эксплуатации скважин.

Объекты разработки подразделяют на самостоятельные и возвратные. Возвратные объекты, в отличие от самостоятельных, предполагается разрабатывать скважинами, эксплуатирующими в первую очередь какой-то другой объект .

Сетка размещения скважин

Сетка скважин – характер взаимного расположения добывающих и нагнетательных скважин на эксплуатационном объекте с указанием расстояний между ними (плотность сетки). Скважины располагают по равномерной сетке и неравномерной сетке (преимущественно рядами). Сетки по форме бывают квадратными, треугольными и многоугольными. При треугольной сетке на площади размещается скважин больше на 15,5 %, чем при квадратной в случае одинаковых расстояний между скважинами.

Под плотностью сетки скважин подразумевают отношение площади нефтеносности к числу добывающих скважин. Вместе с тем это понятие очень сложное. Плотность сетки определяется с учетом конкретных условий. С конца 50-х годов месторождения эксплуатируются с плотностью сетки (3060)·10 4 м 2 /скв. На Туймазинском месторождении плотность сетки 2010 4 м 2 /скв. при расстоянии между скважинами в рядах 400 м, Ромашкинском –6010 4 м 2 /скв. – 1000 м 600 м, Самотлорском – 6410 4 м 2 /скв.

Стадии разработки месторождений

Стадия – это период процесса разработки, характеризующийся определенным закономерным изменением технологических и технико- экономических показателей. Под технологическими и технико- экономическими показателями процесса разработки залежи понимают текущую (среднегодовую) и суммарную (накопленную) добычу нефти, текущую и суммарную добычу жидкости (нефти и воды), обводненность добываемой жидкости ( отношение текущей добычи воды к текущей добыче жидкости), текущий и накопленный водонефтяной фактор ( отношение добычи воды к добыче нефти), текущую и накопленную закачку воды, компенсацию отбора закачкой ( отношение закачанного объема к отобранному при пластовых условиях), коэффициент нефтеотдачи, число скважин (добывающих, нагнетательных), пластовое и забойное давления, текущий газовый фактор, средние дебит добывающих и приемистость нагнетательных скважин, себестоимость продукции, производительность труда, капитальные вложения, эксплуатационные расходы , приведенные затраты и др.

По динамике добычи нефти выделяют четыре стадии процесса разработки залежей пластового типа в гранулярных коллекторах при водонапорном режиме (рис. 6.1). Графики построены в зависимости от безразмерного времени , представляющего собой отношение накопленной добычи жидкости к балансовым запасам нефти.


Рис. 6.1.

Первая стадия – освоение эксплуатационного объекта - характеризуется:

Продолжительность стадии зависит от промышленной ценности залежи и составляет 4 5 лет, за окончание стадии принимается точка резкого перегиба кривой темпа добычи нефти ( отношение среднегодового отбора нефти к балансовым ее запасам).

Вторая стадия – поддержание высокого уровня добычи нефти - характеризуется:

Третья стадия – значительное снижение добычи нефти – характеризуется:

Эта стадия наиболее трудная и сложная для всего процесса разработки, ее главная задача – замедление темпа снижения добычи нефти. Продолжительность стадии зависит от продолжительности предыдущих стадий и составляет 5 10 и более лет. Определить границу между третьей и четвертой стадиями по изменению среднегодового темпа добычи нефти обычно трудно. Наиболее четко ее можно определить по точке перегиба кривой обводненности .

Совместно первую, вторую и третью стадии называют основным периодом разработки. За основной период отбирают из залежей 80 90 % извлекаемых запасов нефти.

Четвертая стадия – завершающая – характеризуется:

Продолжительность четвертой стадии сопоставима с длительностью всего предшествующего периода разработки залежи, составляет 15 20 лет и более, определяется пределом экономической рентабельности, т. е. минимальным дебитом, при котором еще рентабельна эксплуатация скважин. Предел рентабельности обычно наступает при обводненности продукции примерно на 98 %.

Размещение эксплуатационных и нагнетательных скважин на месторождении

Для поддержания пластового давления и увеличения коэффициента отдачи пласта, который на разных месторождениях колеблется в широких пределах, применяют закачку под давлением в продуктивные пласты воды или газа через нагнетательные скважины. Первый метод связан с закачкой под большим давлением (порядка 20 МПа) в нефтяные пласты воды, прошедшей специальную подготовку. Различают законтурное, внутриконтурное и площадное заводнение нефтяных пластов.

Основные понятия и характеристики систем разработки

Под системой разработки месторождения понимается комплекс мероприятий по извлечению углеводородов из недр и уп­равлению этим процессом. Система разработки определяет количество эксплуатационных объектов, способы воздействия на плас­ты и темпы отбора углеводородов из них, размещение и плотность сетки добывающих и нагнетательных скважин, очередность ввода в разработку блоков и участков залежи, способы и режимы эксплуатации скважин, мероприятия по контролю и регулированию процесса разработки, охране недр и окружающей среды.

Системы разработки обосновываются в технологических про­ектных документах.

Под эксплуатационным объектом понимается про­дуктивный пласт, часть пласта или группа пластов, выделенных для разработки самостоятельной сеткой скважин. Пласты, объединяемые в один объект разработки, должны иметь близкие литологические характеристики и коллекторские свойства пород про­дуктивных пластов, физико-химические свойства и состав насы­щающих их флюидов, величины начальных приведенных пласто­вых давлений.

По признаку последовательности ввода отдельных объектов в эксплуатационное разбуривание могут быть выделены следующие системы разработки месторождений.

Система разработки «сверху вниз». Эта система заключается в том, что каждый пласт данного месторождения сначала вводится в разведку, а потом в эксплуатационное массовое разбуривание, но после того, как будет в основном разбурен вышележащий пласт (рис. 10).

Система разработки «сверху вниз» была органически связана с ударным бурением, при котором изоляция одного пласта от дру­гого в процессе бурения достигается не циркуляцией глинистого раствора, как при вращательном бурении, а путем спуска специ­альной колонны обсадных труб для изоляции каждого пласта. При технике ударного бурения эта система разработки была наиболее экономической и соответственно наиболее распростра­ненной. При современном состоянии науки и техники она не позволяет эффективно использовать имеющуюся технику бурения и данные электрометрических исследований скважин. Кроме того, она сильно задерживает темпы разработки и разведки место­рождений и в настоящее время не применяется.

Рис. 10. Схема разработки нефтяных месторождений.

а – по системе «сверху вниз», б – по системе «снизу вверх»

Система разработки «снизу вверх». Данная система заклю­чается в том, что в первую очередь разбуривается самый нижний из высокодебитных горизонтов (пластов). Горизонт, с которого начинается разработка, называется опорным (рис. 10).

Основные преимущества этой системы заключаются в следу­ющем:

1) одновременно с разведкой и разбуриванием опорного гори­зонта каротажем и отбором керна изучаются все вышележащие пласты, что намного сокращает число разведочных скважин, при этом освещается сразу строение всего месторождения;

2) уменьшается процент неудачных скважин, поскольку сква­жины, попавшие за контур залежи в опорном горизонте, могут быть возвращены эксплуатацией на вышележащие горизонты;

3) значительно возрастают темпы освоения нефтяных место­рождений;

4) сокращается число аварий при бурении, связанных с ухо­дом циркуляционного раствора в пласты - коллектора, а также значительно уменьшается глинизация пластов.

Система разработки этажами. Поэтажная система обычно применяется при разработке многопластовых месторождений, в разрезе которых имеются два-три и более выдержанных по простиранию и удаленных по разрезу продуктивных пласта.

По признаку последовательности разработки залежи рядами и ввода скважин в эксплуатацию системы разработки подразделя­ются на поэтапную и одновременную (сплошную).

При поэтапной системе разработки пласта сначала бурят два-три ряда скважин, ближайших к ряду нагнетательных скважин, оставляя при этом значительную часть пласта не разбуренной. Расчеты и опыт разработки месторождений подобным образом показывают, что бурение четвертого ряда скважин не повышает суммарного отбора нефти в силу интерференции скважин. Поэтому к бурению четвертого ряда приступают тогда, когда пер­вый ряд скважин обводнится и выйдет из эксплуатации. Пятый ряд бурят одновременно с выходом из эксплуатации второго ряда скважин и т. д.

Каждая замена внешнего ряда скважин внутренним называ­ется этапом разработки. Такая система разбуривания рядами в слу­чае разработки от контура к своду напоминает ползущую систему сплошного разбуривания по восстанию и отличается от нее тем, что в эксплуатации одновременно находятся не все скважины, а не более трех рядов.

При одновременной системе разработки залежь охва­тывается заводнением одновременно по всей площади.

Классификация разработки пластовых залежей по признаку воздействия, на пласт

Современному состоянию техники соответствует следующее деление методов разработки нефтяных залежей по признаку воз­действия на пласт:

1) метод разработки без поддержания пластового давления;

2) метод поддержания давления путем закачки воды;

3) метод поддержания давления путем закачки газа или воздуха;

4) вакуум-процесс;

5) компрессорно-циркуляционный метод разработки конденсатных месторождений;

6) метод внутрипластового горения;

7) метод циклической закачки пара.

Разработка без поддержания пластового давления применяется в тех случаях, когда давление краевых вод обеспечивает упруго-водо­напорный режим в залежи в течение всего времени эксплуатации или когда по тем или иным причинам экономически невыгодно организовывать закачку газа или воды в пласт.

В тех случаях, когда давление пластовых вод не может обес­печить упруго-водонапорного режима, разработка залежи без поддержания пластового давления обязательно приведет к проявлению режима растворенного газа, а стало быть к низкому коэффициенту использования запасов. В этих случаях необходимо искусственное поддержание пластового давления.

Если предполагается, что нефтяное месторождение будет разрабатываться в основной период при режиме растворенного газа, для которого характерно незначительное перемещение водонефтяного раздела, т. е. при слабой активности законтурных вод, то применяют равномерное, геометрически правильное расположение скважин по квадратной или треугольной сетке. В тех же случаях, когда предполагается определенное перемещение водонефтяного и газонефтяного разделов, скважины располагают с учетом положения этих разделов.

Метод поддержания давления путем закачки воды преследует цель поддерживать пластовое давление выше давления насыщения. Этим будет обеспечена разработка залежи при жестком водонапор­ном режиме. Последнее дает возможность разрабатывать залежь до извлечения 40 - 50% запасов преимущественно фонтанным способом с высокими темпами отбора жидкости и в конечном счете получать высокий коэффициент использования запасов – 60 - 70%.

Системы разработки с поддержанием пластового давления в свою очередь подразделяются на системы с законтурным, приконтурным и внутриконтурным воздействием.

Метод поддержания давления, при котором вода закачивается в законтурную область пласта, называется закон­турным заводнением. Законтурное заводнение рацио­нально применять при разработке относительно узких залежей (шириной не более 3-4 км), на которых размещается от трех до пяти рядов эксплуатационных скважин.

При разработке крупных залежей, когда закачка воды в за­контурную область не сможет обеспечить заданных темпов добычи и охватить влиянием скважины, расположенные внутри залежи, целесообразно применять внутриконтурное завод­нение. Раньше на заре развития методов поддержания давле­ния путем закачки воды применяли поэтапную систему разработки, которая представляла собою ползущую систему разработки по восстанию или по падению. В том и другом случае образовывалась законсервированная часть залежи, что крайне нежелательно. Поэтому при разработке крупных залежей в на­стоящее время применяют внутриконтурное заводнение .

Системы с внутриконтурным воздействием делятся на рядные, площадные, очаговые, избирательные, цетральные.

Внутриконтурное заводнение применяется такжепри разра­ботке литологических залежей , границы которых определяются замещением песчаников глинами. В этих случаях воду закачивают по оси залежи. Такое заводнение называется внутриконтурным по оси. Если же закачка производится в центре литологически ограниченной залежи через одну скважину, заводнение называ­ется очаговым. Практика показала эффективность такого заводнения литологических объектов, состоящих из большого числа линзообразных залежей.

С течением времени при очаговом заводнении соседние эксплуа­тационные скважины начинают обводняться, и после полного обводнения их переводят под нагнетание воды. Постепенно оча­говое заводнение превращается в центральное.

Центральным называется заводнение, которое производится через три-четыре скважины, расположенные в центре залежи.

Как правило, центральное заводнение через несколько скважин сразу в начале разработки на практике никогда не осуществляется.

В практике разработки крупных залежей применяются одно­временно законтурное, внутриконтурное по блокам и очаговое заводнения.

При разработке крупных залежей нефти платформенного типа в Западной Сибири применяют рядные системы разработки. Разновидность их - блоковые системы. При этих системах на месторождениях, обычно в направлении, поперечном их простиранию, располагают ряды добывающих и нагнетательных скважин. Практически применяют трехрядную и пятирядную схемы расположения скважин, представляющие собой соответственно чередование трех рядов добывающих и одного ряда нагнетательных скважин, пяти рядов добывающих и одного ряда нагнетательных скважин. При большем числе рядов (семь-девять) центральные ряды скважин не будут обеспечиваться воздействием от нагнетания вследствие их интерференции со скважинами крайних рядов.

Число рядов в рядных системах нечетное вследствие необходимости проводки центрального ряда скважин, к которому предполагается стягивать водонефтяной раздел при его перемещении в процессе разработки пласта. Поэтому центральный ряд скважин в этих системах часто называют стягивающим рядом.

Расстояние между рядами скважин обычно изменяется в пре­делах 400 - 600 м (реже до 800 м), между скважинами в рядах - в пределах 300 - 600 м.

При трехрядной системе за­лежь разрезается рядами нагнетательных скважин на ряд по­перечных полос шириною, равной четырехкратному расстоянию между рядами скважин. При пятирядной системе ширина полос равна шестикратному расстоянию между рядами. Эти системы разработки обеспечивают очень быстрое разбуривание залежей. При этих системах в начале разработки залежи не учитываются литологические особенности пласта.

Системы с площадным расположением скважин. Рас­смотрим наиболее часто используемые на практике системы разработки нефтяных месторождений с площадным расположе­нием скважин: пятиточечную, семиточечную и девятиточечную.

Пятиточечная обращенная система (рис. 11). Элемент системы представляет собой квадрат, в углах которого находятся добывающие, а в центре - нагнетательная скважина. Для этой си­стемы отношение нагнетательных и добывающих скважин со­ставляет 1/1.

Рис. 11. Расположение скважин при пятиточечной обращенной системе разработки

Семиточечная обращенная система (рис. 12). Элемент системы представляет собой шестиугольник с добывающими скважина­ми в углах и нагнетательной в центре. Добывающие сква­жины расположены в углах шестиугольника, а нагнетательная- в центре. Соотношение 1/2, т. е. на одну нагнетательную сква­жину приходятся две добывающие.

Рис. 12. Расположение скважин при семиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Девятиточечная обращенная система (рис. 13). Соотношение нагнетательных и добывающих скважин составляет 1/3.

Рис. 13. Расположение скважин при девятиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная. Считается, что все площадные системы «жест­кие», поскольку при этом не допускается без нарушения гео­метрической упорядоченности расположения скважин и пото­ков движущихся в пласте веществ использование других нагне­тательных скважин для вытеснения нефти из данного элемента, если нагнетательную скважину, принадлежащую данному элементу, нельзя эксплуатировать по тем или иным причинам.

В самом деле, если, например, в блочных системах разработки (особенно в трехрядной и пятирядной) не может эксплуатиро­ваться какая-либо нагнетательная скважина, то ее может заме­нить соседняя в ряду. Если же вышла из строя или не прини­мает закачиваемый в пласт агент нагнетательная скважина одного из элементов системы с площадным расположением скважин, то необходимо либо бурить в некоторой точке эле­мента другую такую скважину (очаг), либо осуществлять про­цесс вытеснения нефти из пласта за счет более интенсивной за­качки рабочего агента в нагнетательные скважины соседних элементов. В этом случае упорядоченность потоков в элементах сильно нарушается.

В то же время при использовании системы с площадным рас­положением скважин по сравнению с рядной получают важное преимущество, состоящее в возможности более рассредоточенно­го воздействия на пласт. Это особенно существенно в процессе разработки сильно неоднородных по площади пластов. При ис­пользовании рядных систем для разработки сильно неоднород­ных пластов нагнетание воды или других агентов в пласт со­средоточено в отдельных рядах. В случае же систем с площад­ным расположением скважин нагнетательные скважины более рассредоточены по площади, что дает возможность подвергнуть отдельные участки пласта большему воздействию. В то же вре­мя, как уже отмечалось, рядные системы вследствие их боль­шой гибкости по сравнению с системами с площадным распо­ложением скважин имеют преимущество в повышении охвата пласта воздействием по вертикали. Таким образом, рядные си­стемы предпочтительны при разработке сильно неоднородных по вертикальному разрезу пластов.

В поздней стадии разработки пласт оказывается в значитель­ной своей части занятым вытесняющим нефть веществом (на­пример, водой). Однако вода, продвигаясь от нагнетательных скважин к добывающим, оставляет в пласте некоторые зоны с высокой нефтенасыщенностью, близкой к первоначальной нефтенасыщенности пласта, т. е. так называемые целики нефти. На рис. 14 показаны целики нефти в элементе пятиточечной систе­мы разработки. Для извлечения из них нефти в принципе мож­но пробурить скважины из числа резервных, в результате чего получают девятиточечную систему.

Помимо упомянутых известны следующие системы разработ­ки: система с батарейным (кольцевым) расположением скважин (рис. 15), которую можно использовать в редких случаях в залежах кру­говой формы в плане; система при барьерном заводнении, при­меняемом при разработке нефтегазовых залежей; смешанные системы-комбинация описанных систем разработки, иногда со специальным расположением скважин, используют их при раз­работке крупных нефтяных месторождений и месторождений со сложными геолого-физическими свойствами.

Рис. 14. Элемент пятиточечной системы, трансформируемый в элемент девятиточечной системы расположения скважин

1 – «четверть» основных добывающих скважин пятиточечного элемента (угловые скважины), 2 – целики нефти (застойные зоны), 3 – дополнительно пробуренные добывающие скважины (боковые скважины), 4 - заводненная область элемента, 5 - нагнетательная скважина

Рис. 15. Схема батарейного расположения скважин

1 – нагнетательные скважины, 2 – условный контур нефтеносности, 3 и 4 – добывающие скважины соответственно первой батареи радиусом R 1 и второй батареи радиусом R 2

Кроме того, используют избирательное системы воздействия, применяемые для регулирования разработки нефтяных мес­торождений с частичным изменением ранее существовавшей си­стемы.

В случае применения методов воздействия при разработке истощенных залежей их называют вторичными. Если они применяются с самого начала разработки залежи, их называют первичными. Вакуум-процесс является типичным вто­ричным способом и никогда не применяется с самого начала экс­плуатации.

Метод поддержания давления путем закачки газа обычно применяется в залежах, которые имеют газовую шапку. Поддержание давления путем закачки газа преследует цель под­держивать энергетические ресурсы пласта в процессе эксплуата­ции. Для этого с самого начала эксплуатации в сводовую часть структуры закачивают газ через нагнетательные сква­жины, расположенные вдоль длинной оси структуры. Кроме того, закачка газа иногда применяется при площадном вытеснении нефти газом (метод Мариэтта).

Термическое воздействие на пласт осуществляется путем закачки горячей воды в пласт через нагнетательные скважины. Закачка горячей воды применяется при заводнении пластов, содержащих сильно парафинистую нефть и имеющих температуру около 100° С. Закачка холодной, воды в такой пласт приводит к охлаждению пласта, к выпадению парафина, который закупо­ривает поры пласта.

В том случае, когда воздействие на пласт по средствам закачки воды осуществляется после разработки залежи при режиме рас­творенного газа, можно выде­лить два основных этапа: а) период безводной добычи, когда нагнетаемая вода идет на заполнение дренированных пустот, занятых газом низкого давления, и на заме­щение вытесняемой остаточной нефти; б) период прогрессиру­ющего обводнения эксплуатационных скважин.

К моменту прорыва воды в эксплуатационные скважины все поровое пространство в пласте будет занято жидкой фазой, по­этому дальнейший процесс заводнения будет установившимся: количество добываемой в сутки жидкости будет равно суточному объему закачиваемой воды.

Обобщение материалов, проведенное американскими исследо­вателями , показало, что коэффициент извлечения нефти при режиме растворенного газа в среднем составляет 20% от геологических запасов. Применение площадного заводнения на последней стадии разработки увеличивает его до 40%. В то же время применение заводнения в самом начале разработки увеличивает коэффициент извлечения от 60 до 85%. Согласно расчетам американских спе­циалистов, на месторождении Ист-Тексас ожидается конечная нефтеотдача порядка 80% от геологических запасов.

Можно указать еще четыре параметра, которыми характеризуют ту или иную систему разработки.

1. Параметр плотности сетки скважин S c , равный площади нефтеносности, приходящейся на одну скважину, независимо от того, является скважина добывающей или нагнетательной.
Если площадь нефтеносности месторождения равна S, а число скважин на месторождении n, то S c = S/n. Размерность - м 2 /скв. В ряде случаев используют параметр S сд, равный площади нефтеносности, приходящейся на одну добывающую скважину.

2. Параметр А.B. Крылова N кр, равный отношению извлекаемых запасов нефти N к общему числу скважин на месторождении N кр = N/n. Размерность параметра =т/скв.

3. Параметр , равный отношению числа нагнетательных скважин n н к числу добывающих скважин n д = n н /n д. Параметр - безразмерный. Параметр для трехрядной системы равен примерно 1/3, а для пятирядной ~1/5.

4. Параметр р, равный отношению числа резервных скважин, бурящихся дополнительно к основному фонду скважин на месторождении к общему числу скважин. Резервные скважины бурят с целью вовлечения в разработку частей пласта, не охваченных разработкой в результате выявившихся в процессе эксплуатационного его разбуривания не известных ранее особенностей геологического строения этого пласта, а также физических
свойств нефти и содержащих ее пород (литологической неоднородности, тектонических нарушений, неньютоновских свойств нефти и т. д.).

Если число скважин основного фонда на месторождении составляет n, а число резервных скважин n р, то р = n р /n. Параметр р - безразмерный.

Параметр плотности сетки скважин S с вообще говоря, может изменяться в очень широких пределах для систем разработки без воздействия на пласт. Так, при разработке месторождений сверхвязких нефтей (вязкостью в несколько тысяч 10 -3 Па*с) он может составлять 1 - 2*10 4 м 2 /скв. Нефтяные месторождения с низкопроницаемыми коллекторами (сотые доли мкм 2) разрабатывают при S c = 10 - 20*10 4 м 2 /скв. Конечно,
разработка как месторождений высоковязких нефтей, так и месторождений с низкопроницаемыми коллекторами при указанных значениях S c может быть экономически целесообразной при значительных толщинах пластов, т. е. при высоких значениях параметра А.И.Крылова или при небольших глубинах залегания разрабатываемых пластов, т.е. при небольшой стоимости скважин. Для разработки обычных коллекторов S c = 25 - 64*10 4 м 2 /скв.

При разработке месторождений с высокопродуктивными трещиноватыми коллекторами S c может быть равен 70 - 100*10 4 м 2 /скв и более. Параметр N кр также изменяется в довольно широких пределах. В некоторых случаях он может быть равен нескольким десяткам тысяч тонн нефти на скважину, в других - доходить до миллиона тонн нефти на скважину.

Для систем разработки нефтяных месторождений без воздействия на пласт параметр , естественно, равен нулю, а параметр р может составлять в принципе 0,1 - 0,2, хотя резервные скважины в основном предусматривают для системы с воздействием на нефтяные пласты.