Альтернативные источники энергии мировое будущее. Будущее энергетики: мировые тенденции, мечты и реалии. Джоули из турникетов

Реферат

Энергетика будущего. Альтернативные методики будущего

План

К солнечной эре энергетики

Термоядерный синтез

Высотный ветер

Космическое зеркало

Нанотехнологические солнечные элементы

Глобальная суперсеть

Волны и приливы

Микробиологическая энергетика


Создание атомной техники по праву признано революцией в энергетике, и ее творцы не без оснований утверждают, что сердцевиной энергетики будущего должна стать и станет атомная энергия. Так можно ли в этих условиях вести речь о каком-то «солнечном веке» энергетики? Да, еще совсем недавно такие разговоры были бы безосновательны. Но сегодня при быстром сокращении легкодоступных запасов нефти и газа и постоянном ужесточении требований к химической, радиационной и тепловой чистоте энергопроизводства уже очевидно, что скоро развитие земной энергетики будет сдерживаться не техническими, а экологическими барьерами, и мощные термоядерные электростанции скорее всего придется располагать вне Земли. В то же время идет быстрое совершенствование процессов улавливания и преобразования абсолютно чистой во всех отношениях солнечной энергии.

Еще более замечательные перспективы открываются перед солнечной энергетикой в космосе. Не случайно о развитии этого направления очень заботился, будучи руководителем советской космической программы, академик М. В. Келдыш. «На совещаниях у него, - вспоминает академик В. С. Авдуевский, - не раз рассматривались различные варианты конструкций орбитальных солнечных электростанций, способы выведения и сборки в космосе, вопросы создания пленок для солнечных батарей, проблемы преобразования энергии и передачи ее на Землю с учетом охраны окружающей среды и экономического эффекта».

В наши дни проблема овладения солнечной энергией космоса становится одним из основных стимулов развития внеземного производства, подобно тому как в конце прошлого века она послужила основой самого рождения научной космонавтики. Тогда К. Э. Циолковский поразился общеизвестному факту, что почти вся энергия Солнца пропадает бесполезно для людей, и целеустремленно стал искать способ овладения всей этой энергией. В результате им была создана теория реактивного движения и изобретена ракета на жидком топливе как реальное средство осуществления космических полетов. Мечта о полете к звездам превратилась в науку - теоретическую космонавтику. Опубликованную в 1912 году вторую часть своей основополагающей работы «Исследование мировых пространств реактивными приборами» Циолковский завершил словами: «Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле.

Лучшая часть человечества, по всей вероятности, никогда не погибнет, но будет переселяться от солнца к солнцу по мере их погасания»...

Исторический оптимизм ученья Циолковского вдохновил многих на самоотверженный труд по осуществлению его идей. А в СССР после победы Октября эти идеи получили всенародное признание, по всей стране стали возникать кружки, общества, группы по изучению межпланетных сообщений и реактивного движения. Проблеме стали уделять внимание дипломированные инженеры и ученые. Один из них, академик Д. А. Граве, в 1925 году посчитал необходимым ободрить энтузиастов космонавтики своим авторитетным приветствием, в котором писал: «Кружки исследования и завоевания мирового пространства встречают несколько скептическое к себе отношение во многих общественных кругах. Людям кажется, что дело идет о фантастических необоснованных проектах путешествий по межпланетному пространству в духе Жюля Верна, Уэллса или Фламмариона и вообще других романистов.

Профессиональный ученый, скажем, например, академик, конечно, не может стоять на этой точке зрения.

Мое сочувствие к вашему кружку покоится на серьезных соображениях. Уже пять лет тому назад я указывал на страницах газеты «Коммунист» на необходимость использовать электромагнитную энергию Солнца. При этом я руководствовался не какими-нибудь фантастическими соображениями, а неумолимой логикой совокупности фактов...

Единственный способ практического подхода к использованию электромагнитной энергии Солнца намечен русским ученым К.Э. Циолковским при помощи реактивных приборов или межпланетных аппаратов, которые вполне уже разработаны для этих целей и являются реальной действительностью завтрашнего дня. Так что организация данных кружков своевременна и целесообразна».

Сам Циолковский и его последователи, кроме исходной цели овладения энергией Солнца, выявили для космонавтики множество других, сравнительно более просто достижимых и потому более актуальных целей и задач по исследованию и освоению космического пространства в интересах науки и народного хозяйства, ставших основным стимулом для бурного развития ракетно-космической техники. Но основоположник космонавтики постоянно обращал внимание и на проблемы, связанные с решением исходной цели. Вот фрагменты его работ.

1920 год. Электрический ток можно получать в эфире теми же разнообразными способами, как и на Земле. Непосредственно с помощью солнечной теплоты, при посредстве термоэлектрических батарей. Последнее будет неэкономично, хотя со временем, может быть, найдут такие вещества для термоэлектрических батарей, которые почти всю теплоту Солнца будут превращать в электричество.

Надежнее для добывания электричества солнечные двигатели, которые могут утилизировать очень высокий процент (до 50 и более) солнечной энергии. Сущность их устройства такая же, как обыкновенных паровых двигателей с холодильником... Как и на Земле, большой многосильный двигатель почти целиком превращает свою энергию с помощью динамо-машины в электричество.

1926 год. Мы можем достигнуть завоевания солнечной системы очень доступной тактикой. Решим сначала легчайшую задачу: устроить эфирное поселение поблизости Земли, в качестве ее спутника... Поселившись тут устойчиво и общественно, освоившись хорошо с жизнью в эфире, мы уже более легким путем будем изменять свою скорость, удаляться от Земли и Солнца, вообще разгуливать, где нам понравится. Энергии же кругом великое изобилие в виде никогда не погасающего, непрерывного и девственного лучеиспускания Солнца. Этой энергии сколько угодно, и улавливать ее нетрудно в огромном количестве протянутыми от ракеты проводниками или иными неизвестными средствами...

1927 год. Солнечная энергия - главное; только мы не умеем ею пользоваться, и мешает тому еще атмосфера, ничтожное население (Циолковский считал, что население Земли в будущем должно возрасти во много раз. - Примеч. ред.), незнание и прочее. Эта энергия подобна электрической, и потому найдут средства ее почти целиком переводить в механическую, химическую и прочие виды энергии. Только наше невежество заставляет нас пользоваться ископаемым топливом. Да и надолго ли хватит минерального горючего?

1929 год. Какие выгоды может извлечь человечество из доступности небесных пространств? Многие воображают себе небесные корабли с людьми, путешествующими с планеты на планету, постепенное заселение планет и извлечение отсюда выгод, какие дают земные обыкновенные колонии. Дело пойдет далеко не так. Главная цель и первые достижения относятся к распространению человека в эфире, использованию солнечной энергии и повсюду рассеянных масс. Из них создается сфера, которую может занять человек! На двойном расстоянии от Солнца она в 2,2 миллиарда раз больше всей поверхности Земли. Во столько же раз эта сфера получает больше и солнечной энергии сравнительно с Землей.

И вот началась предсказанная Циолковским космическая эра человечества. Хотя полеты первых спутников преследовали чисто научные цели, они вдохнули новую жизнь и в солнечную энергетику. Уже в 1958 году третий советский и первый американский спутники были оснащены солнечными батареями. С ними в реальных многомесячных условиях космического полета не мог конкурировать никакой другой источник энергии. С развитием практической космонавтики шло быстрое совершенствование и солнечных генераторов. Опыт работы орбитальной станции «Салют-6» показал, что проблема снабжения электроэнергией очень энергоемкого оборудования современных космических аппаратов за счет солнечной энергии полностью разрешена. Успехи космонавтики открыли перспективы создания в будущем грандиозных космических солнечных электростанций (КЭС) для снабжения энергией не только аппаратов и сооружений, работающих на орбитах, но и Земли.

Мы уже немного писали о проектах КЭС (см. «ТМ», № 3 за 1973 год), представляя их как возможную к 2050 году, но маловероятную из-за низкой экономической эффективности область развития космической техники. Но представления меняются. На сегодня сформировалось мнение, что энергетические потребности человечества могут сделать рентабельными КЭС уже в самом начале XXI века. В результате эта тема превратилась в одну из наиболее обсуждаемых на международных и национальных конгрессах и симпозиумах по космонавтике. Например, на Циолковских чтениях 1980 года было 5 научных докладов по КЭС.

XXVI съезд КПСС поставил задачу, с одной стороны, сосредоточить усилия на дальнейшем изучении и освоении космического пространства в интересах развития науки, техники и народного хозяйства, а с другой - увеличить масштабы использования в народном хозяйстве возобновляемых источников энергии. Выполнение его решений, несомненно, приблизит время «солнечной эры» энергетики.

В начале февраля 2006 г. под председательством РФ в «Большой восьмерке» и в рамках Международного партнерства по водородной экономике (IPHE) состоялся всемирный форум «Водородные технологии для производства энергии», генеральным спонсором которого стали Национальная инновационная компания «Новые энергетические проекты» и ГМК «Норильский никель».

Мощная конкуренция на энергетическом рынке для традиционных генераций обусловлена наличием огромного числа альтернативных источников энергии. Во многих странах мира солнечные электростанции, ветропарки и биоэнергетические установки обеспечивают значительные объемы производства электроэнергии. Однако существуют и различные источники энергии будущего, которые только проходят свои первые испытания в научных лабораториях по всему миру.

1 Водородное топливо.
Преимущества: один из самых дешевых и эффективных альтернативных источников энергии.
Не смотря на то, что водород носит звание самого распространенного элемента в космосе, на планете Земля водород можно встретить только в виде различных соединений. Чтобы получить его в чистом виде для дальнейшего использования в энергетике, необходимо затратить определенную энергию. Чаще всего готовый водород помещают в специальные топливные элементы или водородные ячейки, которые становятся основой при производстве водородных автомобилей или водородных заправок.

2 Отходы атомных электростанций.
Преимущества: возможность повторной переработки ядерного топлива.
Первые реакторы во время своей эксплуатации могли перерабатывать с пользой только 5% атомов, а оставшаяся часть ядерного топлива списывалась в ядерные отходы. В современных реакторах используется до 95% атомов, загружаемых в ядерный реактор, а также имеется возможность использовать в качестве ядерного топлива отработавшие топливные элементы предыдущего поколения.

3 Летающие ветрогенераторы.
Преимущества: стабильная скорость ветра на высоте.
Эффективность ветроэнергетики определяется силой и постоянством ветровых потоков. Чтобы получить максимальную отдачу от ветрогенератора, его необходимо поднять на высоту в 300…600 метров, где ветер более стабилен. Уже существуют первые модели летающих ветрогенераторов, промышленную эксплуатацию которых планируется начать на Аляске.

4 Город будущего.
Преимущества: экономия энергии в крупных жилых районах.
Первый энергоэффективный квартал «города будущего» появился в Японии. Освещение всего квартала осуществляется за счет солнечных панелей. Каждый гараж имеет зарядку для электромобиля, получающую энергию от солнечных батарей. Датчики движения, системы сбора дождевой воды и умные системы распределения энергии позволяют исключить ненужные растраты на электроэнергию.

5 Энергия лавы
Преимущества: идеальный источник энергии для стран с большим количеством вулканов.
На Филиппинах уже сейчас четверть расходуемой в стране энергии получается благодаря лаве. Единственный минус подобных систем заключается в температуре «энергоносителя», который нельзя просто перекачать по трубопроводу.

Об отказе от добычи полезных ископаемых заговорили несколько десятилетий назад. Доступных запасов нефти, газа и угля землянам хватит ненадолго, поэтому надо повышать энергоэффективность. Еще одна причина — экологические проблемы, которые ощущают все жители планеты. Но для того, чтобы отказаться от классических источников энергии, необходимо найти им замену — если не более выгодную, то хотя бы сопоставимую по эффективности. Что предлагают ученые взамен газа, нефти и угля?

1. Космические солнечные станции собирают больше энергии светила, чем наземные

Экономически выгодное производство солнечной энергии — штука сложная, так как из-за атмосферы Земли интенсивность солнечного освещения недостаточна. Один из вариантов решения проблемы — построить космические "солнечные фермы", которые будут собирать излучение Солнца "в чистом виде" и передавать накопленную энергию на Землю при помощи лазерных лучей или микроволн. Проблема в цене — она превышает разумную. Но в будущем солнечные батареи будут эффективнее, цена вывода кораблей и грузов на орбиту уменьшится, и "космические солнечные фермы" вполне смогут доставлять нам энергию.

Схема, показывающая разницу в количестве лучей, попадающих на земную солнечную станцию (слева) и на космическую (справа).

Концепт станции, которая собирала бы энергию Солнца, авторства НАСА

2. Энергия человека заряжает гаджеты

Системы, которые можно зарядить с помощью силы мышц, уже существуют. Но человек производит огромное количество движений, которые — теоретически — можно было бы трансформировать в энергию. Условно говоря, сейчас вы водите пальцем по экрану смартфона "впустую" — а могли бы в процессе заряжать смартфон. Если девайс может посчитать количество шагов и реагировать на движение, почему его нельзя зарядить от движения пальцев? Ученые исследуют этот вопрос, но результатов или прототипов самозаряжающихся устройств пока нет.

3. Приливы — еще один источник энергии

В приливной энергетике работает сотня компаний, а энергия волн в некоторых регионах используют в практических целях. Так, в Австралии часть опреснительных установок полностью обеспечивают энергией за счет приливов и отливов.

4. Водород — дёшево и экологически чисто

Раньше шаттлы NASA заправлялись именно этим видом топлива. Проблема в том, что водород хоть самый распространенный элемент в космосе, на Земле есть только в виде соединений. А значит, для получения чистого элемента нужно потратить энергию. Зато после его можно "упаковать" в топливные ячейки и использовать по назначению. Honda, например, производит автомобили, которые передвигаются на энергии из таких "водородных ячеек". Водородные заправки строят в Калифорнии (США), Южной Корее и Германии.

5. Геотермальная энергетика — энергия лавы

Благодаря лаве получают 27% энергии на Филиппинах и 30% энергии в Исландии. В Исландии же недавно открыли крутой источник геотермальной энергии — подземное магматическое озеро, и эффективность производства геотермальной энергии выросла в 10 раз.

Это выгодная система, но она слишком зависит от геологических особенностей территории. Магму, в отличие от газа или нефти, по трубопроводу не перекачаешь.

6. Ядерные отходы — старые урановые стержни можно использовать заново

В конструкции "классической" атомной электростанции урановые стержни погружены в воду, а к концу срока их службы использованными оказываются только 5% атомов урана — остальные 95% отправляются в утиль с маркировкой "ядерные отходы". Новая технология предполагает погружать стержни в жидкий натрий и позволит поменять соотношение использованных и неиспользованных ресурсов — 5% урана уйдет в отходы, а 95% превратятся в энергию. Причем в таких реакторах можно повторно использовать стержни, списанные с атомных электростанций предыдущего поколения. Компания Hitachi уже построила новые "быстрые реакторы" и продаёт их, но построить такую станцию очень дорого. К тому же мир все еще с опаской относится к атомным электростанциям — все помнят о нескольких крупных авариях, включая и катастрофу на Чернобыльской АЭС.

7. Прозрачные (оконные) солнечные батареи

Германия, где климат не слишком отличается от украинского, занимается производством солнечной энергии. Стоимость производства батарей падает, а эффективность и популярность растут. Тем более что ученые из Лос-Анжелеса придумали прозрачные солнечные батареи , которые монтируются прямо на оконное стекло. Технология дорогая, но в ближайшие 2-3 года подешевеет достаточно, чтобы предложение было экономически выгодным.

8. Биотопливо из водорослей

За 11 лет — с 2002 по 2013 год — производство биотоплива выросло примерно на 500%. Причина — потребность в этаноле (спирте) и биодизеле, которые добавляют к топливу. По задумке Генри Форда, изобретателя современного автомобиля, двигатель и должен был работать на этаноле. Но тогда как раз открыли много новых месторождений нефти, и она была очень дешёвой. Сейчас это не самый выгодный вид топлива, и этанол возвращается. Проблема "классического" биотоплива — этанола — в том, что для его производства используют то же сырье и те же земли, что и для выращивания пищевых культур. То есть энергетическая отрасль начинает конкурировать с пищевой.

Решить эту проблемы можно с помощью водорослей. Неприхотливые, быстрорастущие, позволяющие легко добывать необходимые компоненты, а "сухой остаток" пускать в переработку и использовать для выращивания нового урожая водорослей.

9. Летающие ветряки — перерождение старой технологии

Использование энергии ветра — классическая технология. Но её эффективность можно существенно увеличить, а энергию добывать по всему миру, а не только в регионах с благоприятным рельефом. Для того, чтобы "ветряные мельницы" были эффективными, нужна значительная сила ветра. А решается проблема просто: достаточно поднять ветряную турбину на 300-600 метров над уровнем моря, где потоки воздуха сильнее и стабильнее. Первые "летающие ветряки" установят на Аляске. Конструктивно это дирижабль со смонтированной турбиной. При слишком сильном ветре такой ветряк самостоятельно "паркуется" на земле. А автоматика позволит ей выбирать оптимальное положение в пространстве.

10. Термоядерный синтез — источник почти бесконечной энергии

Ядерный синтез безопасен, так как, в отличие от ядерного реактора, он соединят атомы, а не расщепляет их. Существует международный проект по разработке термоядерного реактора — ITER , к которому подключились страны ЕС (официально заявленные как единое целое в рамках данного проекта), а также Китай, Индия, Россия, Республика Корея, США, Казахстан и Япония. Проект существует уже 25 лет, инженерная разработка технической конструкции реактора давно завершена. В 2013 году его начали строить во Франции. К 2020 ученые планируют начать первые эксперименты с плазмой.

Параллельно некоторые коммерческие организации ведут собственные исследования в том же направлении. В случае успеха мир будет обеспечен дешевой и практически бесконечной энергией.

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет.

В 1872 году русский изобретатель Александр Лодыгин создал электрическую лампочку накаливания, но в те времена он не мог даже предположить, что со второй половины XX столетия электростанции привычных типов не смогут удовлетворять растущие потребности человечества без нанесения вреда окружающей среде. И дело даже не в освещении жилых помещений, ведь во многих странах галогеновые лампы уже стали стандартом, а на подходе еще более энергоэффективная технология - светодиоды. Главная причина быстро растущего уровня потребления электричества на планете заключается в возникновении абсолютно новых типов устройств, расходующих гигаватты электроэнергии. В первую очередь речь идет о дата-центрах и электромобилях.

Дата-центры - вычислительные технологии сегодняшнего дня - не только потребляют столько же электричества, сколько целый жилой микрорайон города, но и выделяют огромные объемы тепла. Кроме того, сложно представить, как высоко в самом ближайшем будущем поднимут уровень энергопотребления электрокары - очень перспективные, но пока непригодные для повсеместного применения разработки. Данные проблемы заставляют лучшие умы современности искать новые, экономически выгодные способы выработки электроэнергии, минимизирующие негативное влияние на биосферу. Многие технологии уже активно эксплуатируются на всех континентах. На основе других пока созданы только экспериментальные установки - их творцам еще предстоит доказать рациональность своих идей. Но, возможно, именно за самыми фантастическими методами - будущее нашей планеты.

Солнечная энергия

Гелиоэнергетика подразумевает непосредственное использование солнечного излучения для получения энергии в каком-либо виде. Как и ветер, солнце является ее возобновляемым источником.

Солнечные батареи на основе фотоэлементов, преобразующих энергию фотонов в электричество, не вырабатывают никаких вредных отходов. Главным их преимуществом является возможность комбинирования с тепловыми машинами, что позволяет обеспечить человека не только электричеством, но и отоплением и горячей водой. Компании First Solar, Suntech и Sharp составляют тройку лидеров рынка фото-элементов. Солнечные электростанции (СЭС) широко распространены в Германии, Испании и Японии. К сожалению, в 2010 году на долю гелиоэнергетики приходилось лишь 0,1% всего выработанного в мире электричества, потому что у данного метода есть свои недостатки. Солнечные батареи дорогостоящие (производство фотоэлементов с высоким КПД требует немалых затрат), к тому же их эффективность напрямую зависит от погоды и времени суток. Кроме того, фотоэлементы на основе кадмия сложны в утилизации. Тем не менее миниатюрные солнечные батареи в последнее время широко используются в электронике.

Получение электроэнергии из волн


Мощью волн восхищались еще древнегреческие поэты и философы. Современные специалисты более практичны: они применяют энергию волн не только для выработки электричества, но и опреснения воды в регионах с чрезмерно сухим климатом. В теории вода обладает намного большей кинетической энергией, чем воздух, что позволяет получать в разы больше электричества. Оборудование для строительства волновых электростанций проектируют Marine Current Turbine, Wavegen, Ocean Power Delivery и другие предприятия. Подобные решения идеальны для государств с большой протяженностью морского побережья и сильными порывами ветра. К примеру, волновая электростанция Oyster в Великобритании использует вырабатываемую электроэнергию для получения водорода и алюминия.

Водород и сероводород


Водород является полностью безотходным источником электроэнергии, ведь в результате его горения помимо большого количества тепла выделяется только вода (Н2О) - естественное и совершенно безвредное для окружающей среды вещество. Ведущие автомобилестроительные концерны - Daimler, Honda, General Motors, Hyundai и Fiat - уже выпускают автомобили, двигатель внутреннего сгорания которых способен работать на водороде. Япония готовит к введению в эксплуатацию первый в мире поезд на водороде, а в Германии уже поставлены на конвейер подводные лодки класса U-212 с водородными топливными элементами Siemens. В США идет строительство электростанций на водороде FutureGen мощностью 275 МВт, Китай готовит свой ответ - электростанцию GreenGen со вдвое более высокой мощностью.

Оба проекта применяют технологию газификации угля, которая на данный момент является самой дешевой - $2 (16 гривен) за килограмм водорода. Сырьем для его получения также служит сероводород (H2S) - в глубинных водах морей и океанов его концентрация очень высока. Переработка сероводорода в водород не только позволит получить большие объемы топлива для транспортных средств и электростанций, но и предотвратит повышение концентрации этого ядовитого вещества в морских водах.

Энергия из космоса

Все ранее описывавшиеся альтернативные источники электроэнергии давно прошли этап экспериментальных установок и реально функционируют, принося ощутимую пользу.

Чего нельзя сказать об этом варианте: он все еще балансирует на тонкой грани между произведениями классиков научной фантастики и новейшими технологиями.

Речь идет о космической энергетике. Данная отрасль тесно связана с гелиоэнергетикой, так как использует аналогичные солнечные батареи на основе фотоэлементов. Разница только в одном: исполинского размера солнечные батареи должны расположиться на земной орбите, откуда вырабатываемый ток будет передаваться в виде радиоволн. Трудность проведения практических экспериментов препятствует быстрому развитию данного типа энергетики, ведь позволить себе запустить на орбиту тестовые установки могут только страны, имеющие собственные космодромы. К тому же пока неясно, как именно инженеры планируют минимизировать вред от гигаватт энергии, которая в виде радиоволн хлынет в земную атмосферу, и без того сильно перегруженную спутниковым телевидением и сотовой связью. В целом, космическая энергетика пока является скорее экспериментом, и в ближайшие десятилетия ей предстоит продемонстрировать свой потенциал. Но уже сейчас ясно, что вскоре человечеству станет не хватать электроэнергии, вырабатываемой только на Земле, - придется искать ее источники за пределами планеты.

Получение электроэнергии из биотоплива


Схема автомобиля, работающего на биогазе и обычном топливе Ошибочно называть биотопливом только продукты переработки стеблей и семян растений. На самом деле человек использует простейшее твердое биотопливо еще со времен зарождения цивилизации. Речь идет, конечно же, о дереве. Сейчас древесина расходуется все реже: это слишком ценный материал. На смену ей пришли брикеты из прессованных стружек. Но будущее все же не за твердым, а за жидким биотопливом.

Биоэтанол получают путем переработки рапса, кукурузы и сахарного тростника, биометанол - в результате брожения фитопланктона, биодизель - из животных и растительных жиров. Чаще всего биотопливо применяется как заменитель бензина, но во многих странах тепловые электростанции (ТЭС) перешли на него с мазута и угля. Биоэтанол, производство которого сконцентрировано в Бразилии и США, покрывает 1,5% глобальной потребности в жидком топливе. Эта цифра может показаться незначительной, но, по оценкам ведущих аналитиков, остановка выработки всех видов биотоплива приведет к 15-процентному росту стоимости барреля нефти. В 2010 году Европейский союз ввел унифицированную стандартизацию биотоплива - EN-PLUS.

Но и в случае с этим источником энергии не обошлось без негатива. Мировую общественность волнует проблема растущего потребления биотоплива, ведь поля с плодородной землей все чаще засеивают не продовольственными культурами (пшеницей, рожью или рисом), а рапсом.

Действующие экспериментальные технологии

Существует множество проектов по добыче экологически чистой электроэнергии, которые обладают большим потенциалом, но все еще находятся на стадии разработки. Одним из самых перспективных на сегодняшний день является получение биотоплива третьего поколения в результате переработки особого вида водорослей с высоким содержанием масла. По своим энергетическим характеристикам они значительно превосходят другое сырье. Такие водоросли не распространены широко в естественной среде, но очень быстро растут в искусственных водоемах. Однако основная технологическая трудность заключается в том, что водоросли очень чувствительны к изменениям температуры - она должна поддерживаться на определенном уровне с отсутствием даже минимальных колебаний.

Антиматерия

Давней мечтой ученых является получение антивещества. Любое вещество состоит из частиц, а антивещество - из античастиц. Эти две субстанции полностью противоположны: в обычном веществе протоны в атоме имеют положительный заряд, а электроны - отрицательный, в антивеществе все наоборот - антипротоны с отрицательным зарядом и позитроны с положительным. Частицы антивещества и обычного вещества при контакте аннигилируют - исчезают, и при этом выделяется огромное количество энергии. Тонна антивещества могла бы покрыть годовую энергетическую потребность всей планеты.

Резервация и хранение электроэнергии

Избыток вырабатываемой энергии в одно время и недостаток ее в другое свойственны всем без исключения непостоянным источникам - ветру, солнцу, волнам и т. п.

Теоретически у этой проблемы есть довольно простое решение - использовать аккумуляторы. Но на практике все намного сложнее, чем кажется на первый взгляд.

Необходимость применения батарей в разы увеличивает себестоимость мегаватта вырабатываемой электроэнергии.

На сегодняшний день широко распространены свинцово-кислотные, никель-металл-гидридные, литий-ионные и литий-полимерные аккумуляторы. Свинцово-кислотные, самые распространенные в мире, отличаются высокой ЭДС (электродвижущей силой) и широким диапазоном рабочих температур (от –40 до +40 °С). Именно они чаще всего применяются в качестве аварийных источников электроэнергии. Зато в пользу литий-ионных и литий-полимерных аккумуляторов говорят их миниатюрные размеры и простота в обслуживании. Но стоит отметить, что они подвержены эффекту старения, и продолжительность их жизненного цикла оставляет желать лучшего.

Вывод

Несмотря на серьезные инвестиции в развитие альтернативных источников энергии, сейчас они удовлетворяют менее 1% глобальных нужд человечества в электричестве. Но этот показатель с каждым годом стабильно растет из-за быстро снижающейся себестоимости мегаватта электроэнергии, вырабатываемой подобными методами. На данный момент больше всего средств в развитие экологически чистой энергетики вкладывают Китай, США, Великобритания и Индия. К 2020 году глобальные инвестиции в возобновляемые источники энергии должны вырасти до 1,7 триллиона долларов.

Идея использовать волнение моря для получения энергии не то чтобы нова: заявка на патент волновой мельницы была подана аж в 1799 году. В конце XIX века кинетическую энергию волн научились преобразовывать в электричество - и только в 2008-м в Португалии была запущена первая волновая электростанция. Мощность ее была невелика - всего 2,25 МВт, - но зато потенциал волновой энергетики был оценен по достоинству, и теперь аналогичные проекты создаются в десятке стран, включая Россию.

По подсчетам ученых, в перспективе волновая энергетика окажется выгоднее, чем ветровая (удельная мощность волн на порядок превышает удельную мощность ветра), а прилегающие к морям страны смогут генерировать до 5% электроэнергии за счет волн.

Энергия вирусов

Представь себе, вирусы - микроскопические вредители, которые переносят болезни, - могут быть неплохим источником энергии. Приспособить их для такого использования удалось ученым Национальной лаборатории имени Лоуренса (США). Модифицированный ими вирус-бактериофаг под названием M13 создает электрический заряд при прикосновении к «инфицированной» им поверхности. Иными словами, чтобы получить от него электричество, достаточно провести пальцем, например, по экрану смартфона - делов-то! Правда, максимальный заряд, которого ученым удалось добиться от M13, составлял четверть батарейки AAA. Впрочем, это был лишь первый прорыв в микроэнергетике: ученые полагают, что ее потенциал значительно больше.

Биотопливо из водорослей

Другим не менее изобретательным решением стало использование водной растительности в качестве топлива. Получаемая таким образом энергия едва ли сравнится по объемам с энергией, получаемой от добычи нефти и газа, - зато сможет решить проблему загрязнения водоемов, с каждым годом встающую в ряде стран все острее. Скажем, в Японии. Правительство страны ежегодно выделяет немалые суммы на очистку берегов от водорослей - их переработка позволит хотя бы отбить затраченные средства.

Как водоросли превращаются в топливо? Первым делом собранную растительность помещают в резервуар. Потом при помощи специальных бактерий в нем запускается процесс брожения. При брожении выделяется метан, который в итоге и направляется в электрический генератор.

Как ты понимаешь, получаемой из водорослей энергии недостаточно, чтобы пытаться обеспечить ей жилые дома, - однако она в разы превосходит энергию всех прочих источников биологического топлива и сравнительно просто добывается. А значит, к ней будут обращаться все чаще.

Энергетический потенциал Мирового океана

Волновая энергетика и водоросли лишь часть источников энергии, доступных благодаря океану. Остальные менее популярны - но не менее перспективны:

Энергия приливов. Для ее получения используются приливные электростанции. Подобные установки существуют уже в десятке стран, включая Россию. По подсчетам ученых, данный источник немногим уступает волновой энергетике.

Энергия течений. Представляешь, сколько энергии мог бы вырабатывать, скажем, Гольфстрим? И не пытайся: много. Пока что разработкой этого направления занимаются Великобритания и США. В Штатах, кстати, уже разработана турбина мощностью 400 кВт.

Энергия температурного градиента морской воды. Или попросту энергия, полученная из разницы между температурой воды на поверхности и на глубине. Сравнительно новый источник, исследуемый главным образом США. Потенциал пока не вполне изучен.

Осмотическая энергия. Называемая также энергией диффузии жидкостей, она получается в местах смешивания соленой и пресной воды. Единственная на данный момент подобная электростанция построена в Норвегии.

Не стоит забывать и про так называемую энергию водного потока. Ничего нового: именно ее выработкой занимаются известные тебе гидроэлектростанции.

Энергия земных недр

Нефть и газ не единственное, зачем стоит бурить землю: геотермальная энергия, или энергия земных недр, однажды сможет составить им конкуренцию. Для ее получения используются геотермальные станции. Устанавливаемые вблизи вулканов, такие установки успешно снабжают энергией Исландию, Японию, Индонезию и ряд других стран. При этом сама магма ими не используется: энергию дает кипящая вода вроде той, что вырывается на поверхность в гейзерах.

Энергетический потенциал недр не так высок, как у вышеперечисленных источников. Зато этот вид энергии подходит странам, лишенным выхода к морю.

Термоядерная энергия

Сколько бы альтернативная энергетика ни использовала естественные процессы, происходящие на планете, самый мощный источник энергии будет полностью рукотворным. Им станет ITER - Международный экспериментальный термоядерный реактор, способный воссоздавать процессы, происходящие внутри звезд.

Первоначально запуск ITER планировался на 2016 год, однако теперь сроки сдвинулись к началу 30-х. Более того, подключить установку к энергетической сети удастся от силы к 2040-му. Впрочем, результат стоит ожиданий: выделяемой при термоядерном синтезе энергии должно хватить на несколько стран.