Уравнение гармонического осциллятора

Гармонический осциллятор

Гармони́ческий осцилля́тор (в классической механике) - система , которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

где k - коэффициент жёсткости системы.

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), , торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Свободные колебания

Консервативный гармонический осциллятор

В качестве модели консервативного гармонического осциллятора возьмём груз массы m , закреплённый на пружине жёсткостью k .

Пусть x - смещение груза относительно положения равновесия. Тогда, согласно закону Гука, на него будет действовать возвращающая сила:

тогда полная энергия имеет постоянное значение

Простое гармоническое движение - это движение простого гармонического осциллятора , периодическое движение, которое не является ни вынужденным , ни затухающим . Тело в простом гармоническом движении подвергается воздействию единственной переменной силы , которая по модулю прямо пропорциональна смещению x от положения равновесия и направлена в обратную сторону.

Это движение является периодическим: тело колеблется около положения равновесия по синусоидальному закону. Каждое последующее колебание такое же, как и предыдущее, и период , частота и амплитуда колебаний остаются постоянными. Если принять, что положение равновесия находится в точке с координатой, равной нулю, то смещение x тела от положения равновесия в любой момент времени даётся формулой:

где A - амплитуда колебаний, f - частота, φ - начальная фаза.

Частота движения определяется характерными свойствами системы (например, массой движущегося тела), в то время как амплитуда и начальная фаза определяются начальными условиями - перемещением и скоростью тела в момент начала колебаний. Кинетическая и потенциальная энергии системы также зависят от этих свойств и условий.

Простое гармоническое движение может быть математическими моделями различных видов движения, таких как колебание пружины . Другими случаями, которые могут приближённо рассматриваться как простое гармоническое движение, являются движение маятника и вибрации молекул.

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

F - возвращающая сила, x - перемещение груза (деформация пружины), k - коэффициент жёсткости пружины.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

  1. Когда система выведена из состояния равновесия, должна существовать возвращающая сила, стремящаяся вернуть систему в равновесие.
  2. Возвращающая сила должна в точности или приближённо быть пропорциональна перемещению.

Система груз-пружина удовлетворяет обоим этим условиям.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его, и стремящейся вернуть в начальную точку, то есть, в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Пока в системе нет потерь энергии, груз будет колебаться как описано выше; такое движение называется периодическим.

Дальнейший анализ покажет, что в случае системы груз-пружина движение является простым гармоническим.

Динамика простого гармонического движения

Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m  d²x /dt ² ) и закон Гука (F = −kx , как описано выше), имеем линейное дифференциальное уравнение второго порядка:

m - масса тела, x - его перемещение относительно положения равновесия, k - постоянная (коэффициент жёсткости пружины).

Решение этого дифференциального уравнения является синусоидальным ; одно из решений таково:

где A , ω и φ - постоянные величины, и положение равновесия принимается за начальное. Каждая из этих постоянных представляет собой важное физическое свойство движения: A - это амплитуда, ω = 2πf - круговая частота , и φ - начальная фаза.

Универсальное движение по окружности

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерная проекция универсального движения по окружности. Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

Груз как простой маятник

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной с ускорением свободного падения g даётся формулой

Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от ускорения свободного падения g , поэтому при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

I - момент инерции ; в данном случае I = m ℓ 2 .

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

Затухающий гармонический осциллятор

Взяв за основу ту же модель, добавим в неё силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Здесь введено обозначение: . Коэффициент носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

, где - частота свободных колебаний. , где

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдёт до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы прочитать его показания можно было максимально быстро.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью . Добротность обычно обозначают буквой . По определению, добротность равна:

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной амплитуда колебаний оказывается примерно в раз больше, чем при возбуждении на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в раз, умноженному на .

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

  • Время жизни колебаний (оно же время затухания , оно же время релаксации ) τ - время, за которое амплитуда колебаний уменьшится в e раз.
Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

Вынужденные колебания

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Лекция 1

КОЛЕБАНИЯ

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).



Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

Простейшей моделью колебательного движения атомов в двухатомной молекуле может служить система из двух масс т / и ш?, связанных упругой пружиной. Колебание двух атомов относительно центра масс может быть заменено колебанием одной эквивалентной

массы относительно начальной нулевой точки R= 0, где

R - расстояние между массами, R e - положение точки равновесия.

При классическом рассмотрении предполагается, что пружина идеальна - упругая сила F прямо пропорциональна деформации - отклонению от равновесия х = R-R e , по закону Гука:

где к - константа упругости. Таким образом, сила направлена в сторону возвращения к равновесному положению.

Совместно используя законы Гука и Ньютона (F -та), можно записать:

(обозначая ). Решением такого уравнения, как известно,

служат гармонические функции

где хо - амплитуда, а

Используя приведенную массу получаем:

Мерой потенциальной энергии системы V служит работа

В квантовой механике анализ колебательного движения для простой модели гармонического осциллятора достаточно сложен. Он основан на решении уравнения Шредингера

(у/ - колебательная волновая функция, Е - общая энергия частицы) и выходит за рамки нашего изложения.

Для квантового осциллятора возможен только дискретный ряд значений энергии Е и частот в соответствии с формулой E=hv. Кроме того, минимальное значение энергии осциллятора не равно нулю. Эта величина называется нулевой энергией, она соответствует низшему энергетическому уровню осциллятора и равна , её существование можно объяснить, исходя из соотношения неопределенностей Гейзенберга.

Таким образом, в соответствии с квантовой механикой энергия гармонического осциллятора квантуется:

где v - колебательное квантовое число, которое может принимать значение у=0, 1, 2, 3,....

При взаимодействии осциллятора с квантами электромагнитного излучения следует учитывать три фактора: 1) заселенность уровней (вероятность нахождения молекулы на данном энергетическом уровне); 2) правило частот (Бора), согласно которому энергия кванта должна соответствовать разности энергии каких-либо двух уровней;

3) правило отбора для квантовых переходов: вероятность перехода, т.е. интенсивность линий в спектре поглощения определяется величиной дипольного момента перехода (см. теоретическое введение). В случае простейшего гармонического осциллятора правило отбора получается из рассмотрения волновых функций. Оно гласит, что переходы могут осуществляться только между соседними уровнями («на одну ступеньку»): колебательное квантовое число изменяется на единицу Av = 1. Поскольку расстояния между соседними уровнями одинаковы, то в спектре поглощения гармонического осциллятора должна присутствовать только одна линия с частотой

Так как в соответствии с распределением Больцмана при комнатной и более низких температурах заселен самый нижний колебательный уровень, то наиболее интенсивен переход с самого низкого уровня (d=0), и частота этой линии совпадает с частотой более слабых переходов с вышележащих уровней на соседний, более высокий уровень.

Графики волновых функций гармонического осциллятора для разных значений энергии приведены на рисунке 2.3. Они представляют собой решения уравнения Шредингера для гармонического осциллятора

где N, - нормирующий множитель, Н 0 - полиномы Эрмита, х = R-R e - отклонение от положения равновесия.

Дипольный момент перехода для колебательных переходов, R 0 (или М„) равен:

где ju - дипольный момент молекулы; колеба

тельные волновые функции исходного и конечного состоянийсоответственно. Из формулы видно, что переход разрешен ,

если в точке равновесия - дипольный момент молекулы

изменяется вблизи положения точки равновесия, (кривая ju=f(R) в этой точке не проходит через максимум). Интеграл (второй сомножитель в формуле) также должен быть не равным нулю. Можно показать, что это условие соблюдается, если переход совершается между соседними уровнями, отсюда дополнительное правило отбора Аи = 1.

В случае двухатомных молекул колебательные спектры могут наблюдаться только для гетероядерных молекул, у гомоядерных молекул дипольный момент отсутствует и не изменяется при колебаниях. В колебательных спектрах СО2 проявляются колебания (валентные антисимметричные и деформационные), при которых изменяется дипольный момент, но не проявляются симметричные колебания, при которых он неизменен.

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

КОЛЕБАНИЯ

Лекция 1

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

и имеет два независимых решения: и , так что общее решение:

,

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα – комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

1.1.3 . Примеры колебательных движений различной физической природы

Колебания груза на пружине

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).а.

ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна

То есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.

Возвращающая сила по характеру подчиняется закону Гука F= -kx, где

– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:

(постоянную интегрирования выбирают равной нулю, чтобы при х).

АНГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Открытий в квантовой области и других сферах. При этом изобретаются новые устройства и приспособления, посредством которых можно проводить различные исследования и объяснять явления микромира. Одним из таких механизмов является гармонический осциллятор, принцип действия которого знали еще представители древних цивилизаций.

Устройство и его виды

Гармонический осциллятор - это механическая система, находящаяся в движении, которое описывается дифференциала с коэффициентами постоянного значения. Наиболее простые примеры таких устройств - груз на пружине, маятник, системы акустики, движение молекулярных частиц и др.

Условно можно выделить следующие виды этого устройства:

Применение устройства

Данное приспособление применяется в различных сферах, в основном для изучения природы колебательных систем. Квантовый гармонический осциллятор применяют при исследовании поведения элементов фотонов. Результаты экспериментов могут использоваться в различных сферах. Так, ученые-физики из американского института обнаружили, что атомы бериллия, находящиеся на довольно больших расстояниях друг от друга, могут взаимодействовать на квантовом уровне. При этом поведение этих частиц подобно телам (металлическим шарам) в макромире, двигающимся в поступательно-возвратном порядке, аналогично гармоничному осциллятору. Ионы бериллия, несмотря на физически большие расстояния, обменивались наименьшими единицами энергии (квантами). Это открытие позволяет значительно продвинуть IT-технологии, а также дает новое решение в производстве компьютерной техники и электроники.

Гармонический осциллятор используют при оценке музыкальных произведений. Этот метод называют спектроскопическим исследованием. При этом установлено, что наиболее устойчивой системой является состав из четырех музыкантов (квартет). А современные произведения в большинстве своем являются ангармоничными.