Конечная баллистика. Основы баллистики. Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова

Министерство внутренних дел по Удмуртской Республике

Центр профессиональной подготовки

УЧЕБНОЕ ПОСОБИЕ

ОГНЕВАЯ ПОДГОТОВКА

Ижевск

Составители:

Преподаватель цикла боевой и физической подготовки Центра профессиональной подготовки МВД по Удмуртской Республике подполковник полиции Гильманов Д.С.

Настоящее пособие «Огневая подготовка» составлено на основании Приказа МВД РФ от 13 ноября 2012 г. № 1030дсп "Об утверждении Наставления по организации огневой подготовки в органах внутренних дел Российской Федерации", «Наставления по стрелковому делу «9 мм пистолет Макарова», «Руководства по 5,45 мм автомату Калашникова» в соответствии с программой обучения сотрудников ОВД.

Учебное пособие «Огневая подготовка» предназначено для использования слушателями Центра профессиональной подготовки МВД по Удмуртской Республике на занятиях и самоподготовке.

Привить навыки самостоятельной работы с методическим материалом;

Улучшить "качество" знаний по устройству стрелкового оружия.

Учебное пособие рекомендовано слушателям, проходящим обучение в Центре профессиональной подготовки МВД по Удмуртской Республике при изучении предмета «Огневая подготовка», а также сотрудникам ОВД для занятий по профессиональной служебной подготовке.

Пособие рассмотрено на заседании цикла боевой и физической подготовки ЦПП МВД по УР

протокол №12 от 24.11.2014.

Рецензенты:

полковник внутренней службы Кадров В.М. – начальник отдела служебно - боевой подготовки МВД по Удмуртской Республике.

Раздел 1. Основные сведения из внутренней и внешней баллистики…………………..………….…………....... 4

Раздел 2. Меткость стрельбы. Пути ее повышения…………………………………….…………………................5

Раздел 3. Останавливающее и пробивное действие пули……………………………………………………...........6

Раздел 4. Назначение и устройства частей и механизмов пистолета Макарова………………...............................6

Раздел 5. Назначение и устройство частей и механизмов пистолета, патронов и принадлежности…………...7

Раздел 6. Работа частей и механизмов пистолета…………………………………………………..………………..9

Раздел 7. Порядок неполной разборки ПМ…………………………………………………………....…….............12

Раздел 8. Порядок сборки ПМ после неполной разборки…………………………………………………….…....12

Раздел 9. Работа предохранителя ПМ…….………………………………...………………………………..…..…..12

Раздел 10. Задержки при стрельбе из пистолета и способы их устранения……...………………………..…..…..13

Раздел 11. Осмотр пистолета в собранном виде……………………………………………………………........….13


Раздел 12.Проверка боя и приведение к нормальному бою пистолета………….…………………….....…….....14

Раздел 13. Приемы стрельбы из пистолета………………………………………………………………..……..….15

Раздел 14. Назначение и боевые свойства автомата Калашникова АК- 74 ………………………………………21

Раздел 15. Устройство автомата и работа его частей …………………………………………..……………..……22

Раздел 16. Разборка и сборка автомата………………………………………………………………………….…...23

Раздел 17. Принцип работы автомата Калашникова………………………………………………………………..23

Раздел 18. Меры безопасности при проведении стрельб…………………………………………………………...24

Раздел 19. Меры безопасности при обращении с оружием в повседневной служебной деятельности…….......25

Раздел 20. Чистка и смазка пистолета………………………………….……………………………………………25

Раздел 21. Нормативы по огневой подготовке………..………………...................…..…………………………....26

Приложения………..…………………………………………………………………………………………………..30

Список литературы………….…………………………..……………………………………………………...……..34

Основные сведения из внутренней и внешней баллистики

Огнестрельным оружием называется оружие, в котором для выбрасывания пули, (гранаты, снаряда), из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

Стрелковым оружием называется оружие, стрельба из которого производится пулей.

Баллистика - наука, занимающаяся изучением полета пули (снаряда, мины, гранаты) после выстрела.

Внутренняя баллистика - наука, занимающаяся изучением процессов, происходящих при выстреле, при движении пули (гранаты, снаряда) по каналу ствола.

Выстрелом называется выбрасывание пули (гранаты, мины, снаряда) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходит следующее явление. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на:

· дно пули;

· дно и стенки гильзы;

· стенки ствола;

· затвор.

В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола.

Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику препятствует прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движении (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей при встрече с воздухом порождают пламя и ударную волну. Ударная волна является источником звука при выстреле.

Выстрел происходит в очень короткий промежуток времени (0,001-0,06с.). При выстреле различают четыре последовательных периода:

Предварительный;

Первый (основной);

Третий (период последствия газов).

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола.

Первый (основной) период длится от начала движения пули до момента полного сгорания порохового заряда.

В начале периода, когда скорость движения по каналу ствола пули еще невелика, количество газов растет быстрее, чем объем запульного пространства, и давление газов достигает своего максимального значения (Рм = 2.800 кг/см² патрона образца 1943 года); это давление называется максимальным.

Максимальное давление у стрелкового оружия создается при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать. К концу периода оно составляет порядка 2/3 максимального, а скорость пули возрастает и составляет 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола .

С начала этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают ее скорость движения.

Третий период (период последствия газов) длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю .

В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Максимальной скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули уравновешивается сопротивлением воздуха.

Начальная скорость - скорость движения пули у дульного среза ствола. За начальную скорость принимается условная скорость, которая несколько больше дульной, но меньше максимальной .

При увеличении начальной скорости пули происходит следующее :

· увеличивается дальность полета пули;

· увеличивается дальность прямого выстрела;

· увеличивается убойное и пробивное действие пули;

· уменьшается влияние внешних условий на ее полет .

Величина начальной скорости пули зависит от :

- длины ствола;

- веса пули;

- температуры порохового заряда;

- влажности порохового заряда;

- формы и размеров зерен пороха;

- плотности заряжания пороха.

Внешняя баллистика - это наука, изучающая движение пули (снаряда, гранаты) после прекращения действия на нее пороховых газов.

Траектория кривая линия, которую описывает центр тяжести пули во время полета .

Силы тяжести заставляют пулю постепенно снижаться, а сила сопротивления воздуха постепенно замедляет движение пули и стремится опрокинуть ее.В результате скорость пули уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Для увеличения устойчивости пули в полете ей придается вращательное движение за счет нарезов канала ствола.

При полете пули в воздухе на нее влияют различные атмосферные условия:

· атмосферное давление;

· температура воздуха;

· движение воздуха (ветер) различных направлений.

С увеличением атмосферного давления плотность воздуха увеличивается, вследствие чего увеличивается сила сопротивления воздуха, уменьшается дальность полета пули. И, наоборот, с уменьшением атмосферного давления уменьшается плотность и сила сопротивления воздуха, увеличивается дальность полета пули. Поправки на атмосферное давление при стрельбе учитываются в горных условиях на высоте более 2000 м.

От температуры окружающего воздуха зависит температура порохового заряда, а следовательно, скорость горения пороха. Чем ниже температура, тем медленнее горит порох, медленнее повышается давление, меньше скорость пули.

При повышении температуры воздуха его плотность и, следовательно, сила сопротивления уменьшаются, увеличивается дальность полета пули. Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличиваются, а дальность полета пули уменьшается.

Превышение над линией прицеливания - кратчайшее расстояние от любой точки траектории до линии прицеливания

Превышение бывает положительным, нулевым, отрицательным. Превышение зависит от конструктивных особенностей оружия и используемых боеприпасов.

Прицельная дальность это расстояние от точки вылета до пересечения траектории с линией прицеливания

Прямой выстрел - выстрел, при котором высота траектории не превышает высоту цели на всем протяжении полета пули.

Введение 2.

Объекты, задачи и предмет судебно-

баллистической экспертизы 3.

Понятие огнестрельного оружия 5.

Устройство и назначение основных

частей и механизмов огнестрельного

оружия 7.

Классификация патронов к

ручному огнестрельному оржию 12.

Устройство унитарных патронов

и их основных частей 14.

Оформление заключения эксперта и

Фототаблицы 21.

Список использованной литературы 23.

Введение.

Термин "баллистика " происходит от греческого слова "ballo" – бросаю, мечу. Исторически так сложилось, что баллистика возникла как воинская наука, определяющая теоретические основы и практическое применение закономерностей полета снаряда в воздухе и процессов, сообщающих снаряду необходимую кинетическую энергию. Ее возникновение связывают с великим ученым древности - Архимедом сконструировавшим метательные машины (баллисты) и рассчитавшим траекторию полета метаемых снарядов.

На конкретном историческом этапе развития человечества было создано такое техническое средство, как огнестрельное оружие. Оно стало со временем использоваться не только в военных целях или на охоте, но и в противозаконных целях - как орудие преступления. В результате его использования потребовалось вести борьбу с преступлениями, сопряженными с использованием огнестрельного оружия. Исторические периоды предусматривают правовые, технические меры, направленные на их предотвращение и раскрытие.

Судебная баллистика своим возникновением в качестве отрасли криминалистической техники обязана необходимостью исследовать прежде всего, огнестрельные повреждения, пули, дробь, картечь и оружие.

- это один из видов традиционных криминалистических экспертиз. Научно-теоретической основой судебно-баллистической экспертизы служит наука, получившая название "Судебная баллистика", которая входит в систему криминалистики как элемент ее раздела - криминалистическая техника.

Первыми специалистами, привлекаемыми судами в качестве "экспертов по стрельбе", были оружейники, которые вследствие своей работы знали и могли собрать, разобрать оружие, обладали более или менее точными знаниями о стрельбе, а заключения, которые от них требовались, касались по большей части вопросов о том, был ли произведен выстрел из оружия, с какого расстояния то или иное оружие поражает цель.

Судебная баллистика - отрасль кримтехники, изучающая методами естественно- технических наук с помощью специально разработанных методик и приемов огнестрельное оружие, явления и следы, сопутствующие его действию, боеприпасы и их компоненты в целях расследования преступлений, совершенных с применением огнестрельного оружия.

Современная судебная баллистика сформировалась в результате анализа накопленного эмпирического материала, активных теоретических исследований, обобщения фактов, связанных с огнестрельным оружием, боеприпасами к нему, закономерностями образования следов их действия. Некоторые положения собственно баллистики, то есть науки о движении снаряда, пули, также входят в судебную баллистику и используются при решении задач, связанных с установлением обстоятельств применения огнестрельного оружия.

Одной из форм практического применения судебной баллистики является производство судебно-баллистических экспертиз.

ОБЪЕКТЫ, ЗАДАЧИ И ПРЕДМЕТ СУДЕБНО-БАЛЛИСТИЧЕСКОЙ ЭКСПЕРТИЗЫ

Судебно-баллистическая экспертиза - это специальное исследование, проводимое в установленной законом процессуальной форме с составлением соответствующего заключения в целях получения научно обоснованных фактических данных об огнестрельном оружии, боеприпасах к нему и обстоятельствах их применения, имеющих значение для расследования и судебного разбирательства.

Объектом любого экспертного исследования являются материальные носители информации, которые могут быть использованы для решения соответствующих экспертных задач.

Объекты судебно-баллистической экспертизы в большинстве случаев связаны с выстрелом или его возможностью. Круг этих объектов весьма многообразен. К нему относятся:

Огнестрельное оружие, его части, принадлежности и заготовки;

Стреляющие устройства (строительно-монтажные, стартовые пистолеты), а также пневматическое и газовое оружие;

Боеприпасы и патроны к огнестрельному оружию и иным стреляющим устройствам, отдельные элементы патронов;

Образцы для сравнительного исследования, полученные в результате экспертного эксперимента;

Материалы, инструменты и механизмы, используемые для изготовления оружия, боеприпасов и их компонентов, а также снаряжения боеприпасов;

Выстрелянные пули и стреляные гильзы, следы применения огнестрельного оружия на различных объектах;

Процессуальные документы, содержащиеся в материалах уголовного дела (протоколы осмотра места происшествия, фотоснимки, чертежи и схемы);

Материальная обстановка места происшествия.

Надо подчеркнуть, что из огнестрельного оружия объектами судебно-баллистической экспертизы является, как правило, только стрелковое огнестрельное оружие. Хотя известны примеры проведения экспертиз и по гильзам от артиллерийского выстрела.

Несмотря на все разнообразие и разнохарактерность объектов судебно-баллистической экспертизы, задачи, стоящие перед ней, могут быть разделены на две большие группы: задачи идентификационного характера и задачи неидентификационного характера (рис. 1.1).

Рис. 1.1. Классификация задач судебно-баллистической экспертизы

К идентификационным задачам относятся: групповая идентификация (установление групповой принадлежности объекта) и индивидуальная идентификация (установление тождества объекта).

Групповая идентификация включает в себя установление:

Принадлежности объектов к категории огнестрельного оружия и боеприпасов;

Вида, модели и типа представленных огнестрельного оружия и патронов;

Вида, модели оружия по следам на стреляных гильзах, выстрелянных снарядах и следах на преграде (при отсутствии огнестрельного оружия);

Огнестрельного характера повреждения и типа (калибра) снаряда, нанесшего его.

К индивидуальной идентификации относятся:

Идентификация применявшегося оружия по следам канала ствола на снарядах;

Идентификация применявшегося оружия по следам его частей на стреляных гильзах;

Идентификация оборудования и приборов, применявшихся для снаряжения боеприпасов, изготовления их компонентов или оружия;

Установление принадлежности пули и гильзы одному патрону.

Задачи неидентификационного характера можно разделить на три вида:

Диагностические, связанные с распознаванием свойств исследуемых объектов;

Ситуационные, направленные на установление обстоятельств производства выстрелов;

Реконструкционные, связанные с воссозданием первоначального вида объектов.

Диагностические задачи:

Установление технического состояния и пригодности для производства выстрелов огнестрельного оружия и патронов к нему;

Установление возможности выстрела из оружия без нажатия на спусковой крючок при определенных условиях;

Установление возможности производства выстрела из данного оружия определенными патронами;

Установление факта производства выстрела из оружия после последней чистки его канала ствола.

Ситуационные задачи:

Установление дистанции, направления и места производства выстрела;

Определение взаиморасположения стрелявшего и потерпевшего в момент выстрела;

Определение последовательности и количества выстрелов.

Реконструкционные задачи - это главным образом выявление уничтоженных номеров на огнестрельном оружии.

Обсудим теперь вопрос о предмете судебно-баллистической экспертизы.

Слово "предмет" имеет два основных значения: предмет как вещь и предмет как содержание изучаемого явления. Говоря о предмете судебно-баллистической экспертизы, имеется в виду второе значение этого слова.

Под предметом судебной экспертизы понимают обстоятельства, факты, устанавливаемые посредством экспертного исследования, которые важны для, решения суда и производства следственных действий.

Так как судебно-баллистическая экспертиза есть один из видов судебной экспертизы, то данное определение относится и к ней, но ее предмет можно конкретизировать, исходя из содержания решаемых задач.

Предметом судебно-баллистической экспертизы как вида практической деятельности являются все факты, обстоятельства дела, которые могут быть установлены средствами этой экспертизы, на основе специальных познаний в области судебной баллистики, криминалистической и военной техники. А именно, данные:

О состоянии огнестрельного оружия;

О наличии или отсутствии тождества огнестрельного оружия;

Об обстоятельствах выстрела;

Об относимости предметов к категории огнестрельного оружия и боеприпасов. Предмет конкретной экспертизы определяется вопросами, которые поставлены перед экспертом.

ПОНЯТИЕ ОГНЕСТРЕЛЬНОГО ОРУЖИЯ

Уголовный кодекс, предусматривая ответственность за незаконное ношение, хранение, приобретение, изготовление и сбыт огнестрельного оружия, его хищение, небрежное хранение, не дает четкого определения, что же считать огнестрельным оружием. В то же время в разъяснениях Верховного Суда прямо указывается, что, когда для решения вопроса о том, является ли оружием предмет, который виновный похитил, незаконно носил, хранил, приобрел, изготовил или сбыл, требуются специальные познания, судам необходимо назначать экспертизу. Следовательно, эксперты должны оперировать четким и полным определением, в котором отражены основные признаки огнестрельного оружия.

Когда речь заходит о боеприпасах, я считаю себя не более чем любителем - я немного занимаюсь снаряжением патронов , играюсь в SolidWorks и читаю пыльные тома, полные результатов тяжёлой работы людей, собравших подробнейшую информацию о патронах. Я, честно говоря, зубрила , но не настоящий эксперт. Но когда я начал писать, то обнаружил, что очень небольшое число людей, которых я встречаю, знают о патронах хотя бы столько же, сколько я.

Кстати сказать, эту ситуацию прекрасно иллюстрирует сравнение количества участников форума IAA (около 3200 человек на момент написания статьи), с форумом AR15.com, где количество зарегистрированных членов приближается к полумиллиону. И не забывайте, что форум IAA самый крупный англоязычный форум коллекционеров/любителей боеприпасов - по крайней мере, насколько мне известно, а AR15.com, просто один из множества крупных оружейных форумов в сети.

В любом случае, я являясь частью оружейного мира и как стрелок, и как автор, я услышал множество мифов о боеприпасах и баллистике, некоторые из них довольно очевидны для большинства людей, а вот другие повторяют гораздо чаще, чем следовало бы. Что стоит за некоторыми из этих мифов и в чём истина?

1. Больше значит лучше

Я поставил это утверждение на первое место, так как оно распространено наиболее широко. И этот миф никогда не умрёт, так как он достаточно нагляден. Если у вас есть под рукой, то возьмите и сравните патрон калибра.45 ACP с 9 мм, или.308 Winchester с.223; подойдут любые два патрона, сильно различающиеся по размеру и весу. Это так очевидно, что делает объяснение в определённой степени сложнее, что крупный патрон - лучший патрон, так как он причиняет намного большие повреждения. В вашей руке серьёзная пуля.45 ACP, в ней все три четверти унции (21,2 грамм), и она даже ощущается намного более солидной и мощной по сравнению с 9 мм, или.32, или любой другой пулей меньшего калибра.

Я не буду тратить много времени, строя предположения, "почему"? Может быть, это всё исходит от наших предков, подбиравших в реке камни, чтобы охотится на птиц, но я думаю, что подобная реакция и не даёт исчезнуть этому мифу.

Патроны.308 Win RWS & LAPUA, а также об их баллистике.

Но независимо от причины, внешняя баллистика различных пуль - сложный предмет, и часто результаты отличаются от предположений, которые можно сделать на основе только размеров разных пуль. Высокоскоростные винтовочные пули, убойно разрушающиеся при попадании в цель, например, могут нанести гораздо более тяжёлые раны, чем крупнокалиберные пули большего веса и размера , особенно если цель не защищена. Разрывные пули с полой оболочкой, даже таких небольших калибров, как.32, могут сильно разрушаться и причинять более массивные повреждения, чем оболочечная пуля.45 калибра. Даже форма пули может влиять на характер повреждений, так плоская, угловатая пуля будет лучше прорезать и разрывать ткани, чем пуля большего калибра со скруглённым носиком.

Ничто из этого не говорит, что больший калибра никогда не бывает эффективнее, или что всё одинаково и в определённой степени современные фаргментирующиеся или экспансивные пули не отличаются по эффективности, истина в том, что внешняя баллистика пули значительно глубже и сложнее, и часто реальные результаты разных пуль противоречат ожиданиям.

2. Более длинный ствол = пропорционально более высокой скорости

Это один из мифов , в котором интуитивно чувствуется подвох. Если мы в два раза увеличим длину ствола, мы удвоим скорость, так? Скорее всего, для моих читателей очевидно, что это не так , но есть ещё много людей, придерживающихся этого ложного утверждения (даже конструктор Лорен С. Кук (Loren C. Cook) повторял этот миф, рекламируя свой пистолет-пулемёт ). Это очевидное допущение на основе информации, что более длинные стволы у винтовок (часто) обеспечивают повышение скорости полёта пули, но оно неправильно.

Отношение между длиной ствола и скоростью полёта пули на самом деле очень дифференцировано, но его суть в следующем: Когда загорается порох в патроне, образуются газы, расширяющиеся и оказывающие давление на донышко пули. Когда пуля зажата в гильзе, то при горении пороха давление повышается, и это давление выталкивает пулю из гильзы, а затем толкает её по каналу ствола, теряя свою энергию, кроме этого давление понижается из-за значительного и постоянного увеличения объёма, в котором находится газ. Это означает, что энергия пороховых газов понижается с каждым дюймом длины ствола, и её максимальное значение достигается как раз в оружии с коротким стволом . Например, увеличение длины ствола винтовки с 10 до 13 дюймов может означать увеличение скорости пули на сотни футов в секунду, а увеличение длины с 21 до 24 дюймов может означать увеличение скорости всего на пару десятков футов в секунду. Вы часто слышите, что изменение давления и силы, влияющей на донышко пули, называют «кривой давления».

В свою очередь, эта кривая и её соотношение с длиной ствола отличается для различных зарядов. В патронах Magnum винтовочных калибров используется очень медленно горящее взрывчатое вещество, которое обеспечивает значительное изменение скорости полёта пули даже при использовании длинного ствола. В пистолетных патронах, напротив, используются быстрогорящие пороха, а это означает, что после нескольких дюймов увеличение скорости полёта пули вследствие использования более длинного ствола становится пренебрежительно малым. Фактически, стреляя пистолетным патроном из длинного винтовочного ствола, вы получите даже немного меньшую начальную скорость полёта пули по сравнению с коротким стволом, так как трение между пулей с каналом ствола начнёт тормозить полёт пули сильнее, чем дополнительное давление будет её ускорять.

3. Калибр имеет значение, тип пули - нет

Это странное высокомерное мнение очень часто всплывает в разговорах, особенно в виде фразы: «Калибра Х не достаточно. Вам нужен калибр Y», при этом упоминаемые калибры мало отличаются друг от друга. Возможно, что кто-то выбирает калибр, совершенно неподходящий для поставленной задачи, но чаще всего подобные обсуждения вращаются вокруг патронов, более или менее соответствующих задаче, при правильном выборе типа пули.

И теперь такое обсуждение становится более предметным, чем просто миф: практически во всех подобных спорах следовало бы больше обращать внимание на выбор типа пули, а не на калибр и мощность заряда. В конце концов, между оболочечной пулей.45 ACP и пулей с экспансивной полостью.45 ACP HST разница в эффективности гораздо выше, чем между 9 мм HST и.45 ACP HST. Выбор одного калибра или другого, скорее всего, не обеспечит огромной разницы в результатах попаданий, а вот выбор типа пули определённо имеет значение!

Выдержки полуторачасового семинара "Баллистика" Сергея Юдина в рамках проекта "Национальная стрелковая ассоциация".

4. Импульс = Останавливающая сила

Импульс - масса, помноженная на скорость, очень лёгкая для понимания физическая величина. Крупный мужчина, столкнувшийся с вами на улице, оттолкнёт вас сильнее, чем миниатюрная девушка, если они движутся с одинаковой скоростью. От крупного камня больше брызг. Эту простую величину легко подсчитать и понять. Чем крупнее что-то и чем быстрее оно перемещается, тем больший у него импульс.

Вот почему естественно было использовать импульс для грубой оценки останавливающей силы пули. Этот подход распространился по всему оружейному сообществу, от обзоров, в которых нет никакой информации, кроме того, что чем крупнее пуля, тем громче звон от попадания её по стальной мишени, до «останавливающего коэффициента Тейлора» (Taylor Knock-Out Index), в котором импульс соотносится с диаметром пули в попытке вычислить останавливающую силу по крупной дичи. Однако, хотя импульс и важная баллистическая характеристика, он не связан напрямую с эффективностью пули при попадании в цель, или с «останавливающей силой».

Импульс - сохраняющаяся величина, которая означает, что так как пуля движется вперёд под действие расширяющихся газов, то оружие при выстреле этой пулей будет двигаться назад с тем же импульсом, что и суммарный импульс пули и пороховых газов. Что значит, что импульс пули, которой стреляют с плеча или с рук, не достаточен для нанесения даже значительных повреждений человеку, не говоря уже об убийстве. Импульс пули, в момент попадания в цель, не делает ничего, кроме возможного ушиба тканей и очень небольшого толчка. Поражающая способность выстрела, в свою очередь, определяется скоростью, с которой перемещается пуля, и размерами канала, который создаёт пуля внутри цели.

Данная статья намеренно написана в привлекающей внимание и очень обобщённой манере, так как я планирую рассмотреть эти вопросы более подробно, на разных уровнях сложности, и хочу узнать, насколько читателей заинтересует подобная тема. Если вы хотите, чтобы я подробнее рассказал о боеприпасах и баллистике, скажите об этом в комментариях.

Занимательная баллистика пули от канала National Geographic.

Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории

Внешняя баллистика

Внешняя баллистика - это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория пули (вид сбоку)

Образование силы сопротивления воздуха

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете.

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха - баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/сек в безвоздушном пространстве полетела бы на дальность 32 620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха.

Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Действие силы сопротивления воздуха на полет пули: ЦТ - центр тяжести; ЦС - центр сопротивления воздуха

Чем глаже поверхность пули, тем меньше сила трения и. сила сопротивления воздуха.

Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение.

Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха - она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое, или прецессионное, движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.

Медленное коническое движение пули


Деривация (вид траектории сверху)

Действие силы сопротивления воздуха на полет гранаты

Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина деривации незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитывается.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.

Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед.

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.


Элементы траектории

Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения.

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения. Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания.

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

Точка пересечения траектории с горизонтом оружия называется точкой падения.

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули (гранаты) в точке падения называется окончательной скоростью.

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называется вершиной траектории.

Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории.

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания.

Угол, заключенный между линией прицеливания и горизонтом оружия, называется углом места цели. Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия. Угол места цели может быть определен с помощью приборов или по формуле тысячной.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Траектория пули в воздухе имеет следующие свойства :

Нисходящая ветвь короче и круче восходящей;

Угол падения больше угла бросания;

Окончательная скорость пули меньше начальной;

Наименьшая скорость полета пули при стрельбе под большими углами бросания - на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания - в точке падения;

Время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

Траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Траектория гранаты (вид сбоку)

Траекторию гранаты в воздухе можно разделить на два участка: активный - полет гранаты под действием реактивной силы (от точки, вылета до точки, где действие реактивной силы прекращается) и пассивный - полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.

Форма траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол наибольшей дальности, настильные, навесные и сопряженные траектории

Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пуль различных видов оружия составляет около 35°.

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.

При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными.

При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибки в определении установки прицела); в этом заключается практическое значение настильной траектории.

Превышение траектории полета пули над точкой прицеливания

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания . При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.

Баллистика - это наука о движении, полете и влиянии снарядов. Она разделена на несколько дисциплин. Внутренняя и внешняя баллистика имеют дело с движением и полетом снарядов. Переход между этими двумя режимами называется промежуточной баллистикой. Терминальная баллистика касается воздействия снарядов, отдельная категория охватывает степень поражения цели. Что изучает внутренняя и внешняя баллистика?

Пушки и ракеты

Пушечные и ракетные двигатели являются типами теплового двигателя, частично с превращением химической энергии в апропеллент (кинетическую энергию снаряда). Пропелленты отличаются от обычных видов топлива тем, что их сгорание не требует атмосферного кислорода. В ограниченном объеме производство горячих газов с помощью горючего топлива вызывает увеличение давления. Давление продвигает снаряд и увеличивает скорость горения. Горячие газы имеют тенденцию к эрозии ствола пистолета или горла ракеты. Внутренняя и внешняя баллистика стрелкового оружия изучает движение, полет и влияние, которое снаряд оказывает.

Когда заряд пропеллента в камере пистолета воспламеняется, газы сгорания сдерживаются выстрелом, поэтому давление возрастает. Снаряд начинает двигаться, когда давление на него преодолевает его сопротивление движению. Давление продолжает расти некоторое время, а затем падает, а выстрел ускоряется до высокой скорости. Быстрое горючее ракетное топливо вскоре исчерпано, и со временем выстрел выбрасывается из дула: скорость выстрела до 15 километров в секунду достигнуты. Откидные пушки выпускают газ через заднюю часть камеры, чтобы противодействовать силам отдачи.

Баллистической является ракета, которая направляется в течение относительно короткого начального активного участка полета, чья траектория впоследствии регулируется законами классической механики, в отличие, например, от крылатых ракет, которые направляются аэродинамическим образом в полете с работающим двигателем.

Траектория выстрела

Снаряды и пусковые установки

Снаряд - любой объект, проецируемый в пространство (пустое или нет) при приложении силы. Хотя любой объект в движении в пространстве (например, брошенный мяч) является снарядом, термин чаще всего относится к оружию дальнего боя. Математические уравнения движения используются для анализа траектории снаряда. Примеры снарядов включают шары, стрелы, пули, артиллерийские снаряды, ракеты и так далее.

Бросок - это запуск снаряда вручную. Люди необычайно хороши в метании из-за их высокой ловкости, это развитая черта. Свидетельство человеческого метания датируется 2 миллионами лет. Скорость метания 145 км в час, найденная у многих спортсменов, намного превышает скорость, с которой шимпанзе могут бросать предметы, что составляет около 32 км в час. Эта способность отражает способность человеческих плечевых мышц и сухожилий сохранять эластичность, пока она не понадобится для продвижения объекта.

Внутренняя и внешняя баллистика: кратко о видах оружия

Одними из самых древнейших пусковых устройств были обычные рогатки, лук и стрелы, катапульта. Со временем появились ружья, пистолеты, ракеты. Сведения из внутренней и внешней баллистики включают в себя информацию о различных видах оружия.

  • Сплинг - оружие, обычно используемое для выброса тупых снарядов, таких как камень, глина или свинцовая «пуля». У стропы имеется небольшая колыбель (сумка) в середине соединенных двух длин шнура. Камень помещается в сумку. Средний палец или большой палец помещается через петлю на конце одного шнура, а вкладка на конце другого шнура помещается между большим и указательным пальцами. Слинг качается по дуге, а табуляция выпускается в определенный момент. Это освобождает снаряд, чтобы лететь к цели.
  • Лук и стрелы. Лук - это гибкий кусок материала, который стреляет аэродинамическими снарядами. Тетива соединяет два конца, и, когда она оттягивается назад, концы палки сгибаются. Когда струна отпущена, потенциальная энергия согнутой палки преобразуется в скорость стрелки. Стрельба из лука - это искусство или спорт стрельбы из луков.
  • Катапульта - это устройство, используемое для запуска снаряда на большом расстоянии без помощи взрывных устройств - особенно различных типов древних и средневековых осадных двигателей. Катапульта использовалась с древних времен, поскольку она оказалась одним из наиболее эффективных механизмов во время войны. Слово «катапульта» происходит от латинского, которое, в свою очередь, происходит от греческого καταπέλτης, что означает «бросать, швырять». Катапульты были изобретены древними греками.
  • Пистолет - обычное трубчатое оружие или другое устройство, предназначенное для выпуска снарядов или другого материала. Снаряд может быть твердым, жидким, газообразным или энергичным и может быть свободным, как с пулями и артиллерийскими снарядами, так и с зажимами, как с зондами и китобойными гарпунами. Средство проецирования варьируется в соответствии с конструкцией, но обычно осуществляется действием давления газа, создаваемого путем быстрого сжигания пропеллента, или сжимается и хранится механическими средствами, работающими внутри трубки с открытым концом в виде поршня. Конденсированный газ ускоряет подвижный снаряд по длине трубки, придавая достаточную скорость, чтобы поддерживать движение снаряда, когда действие газа прекращается в конце трубки. В качестве альтернативы можно использовать ускорение посредством генерации электромагнитного поля, в этом случае можно отказаться от трубки и заменить направляющую.
  • Ракета - это ракета, космический корабль, самолет или другое транспортное средство, которое получает удар от ракетного двигателя. Выхлоп двигателя ракеты полностью сформирован из пропеллентов, перевозимых в ракете перед использованием. Ракетные двигатели работают действием и реакцией. Ракетные двигатели выталкивают ракеты вперед, просто бросая их выхлопы назад очень быстро. Хотя они сравнительно неэффективны для использования на низкой скорости, ракеты относительно легки и мощны, способны генерировать большие ускорения и достигать чрезвычайно высоких скоростей с разумной эффективностью. Ракеты не зависят от атмосферы и отлично работают в космосе. Химические ракеты являются наиболее распространенным типом высокопроизводительной ракеты, и они обычно создают их выхлопные газы при сжигании ракетного топлива. Химические ракеты хранят большое количество энергии в легко высвобождаемой форме и могут быть очень опасными. Однако тщательный дизайн, тестирование, конструкция и использование минимизируют риски.

Основы внешней и внутренней баллистики: основные категории

Баллистика может быть изучена с помощью высокоскоростной фотографии или высокоскоростных камер. Фотография выстрела, сделанная с сверхвысокой скоростью вспышки воздушного зазора, помогает рассмотреть пулю без размытия изображения. Баллистика часто разбивается на следующие четыре категории:

  • Внутренняя баллистика - изучение процессов, изначально ускоряющих снаряды.
  • Переходная баллистика - изучение снарядов при переходе на безналичный полет.
  • Внешняя баллистика - изучение прохождения снаряда (траектории) в полете.
  • Терминальная баллистика - изучение снаряда и его последствий по мере его завершения

Внутренняя баллистика является изучением движения в виде снаряда. В пушках она покрывает время от зажигания ракетного топлива до тех пор, пока снаряд не выйдет из ствола орудия. Это то, что изучает внутренняя баллистика. Это важно для дизайнеров и пользователей огнестрельного оружия всех типов, от винтовок и пистолетов, до высокотехнологичной артиллерии. Сведения из внутренней баллистики для ракетных снарядов охватывает период, в течение которого ракетный двигатель обеспечивает тягу.

Переходная баллистика, также известная как промежуточная баллистика, - это исследование поведения снаряда с момента его выхода из дула до тех пор, пока давление за снарядом не будет уравновешено, поэтому оно находится между понятием о внутренней и внешней баллистике.

Внешняя баллистика изучает динамику атмосферного давления вокруг пули и является частью науки о баллистике, которая занимается поведением снаряда без питания в полете. Эта категория часто ассоциируется с огнестрельным оружием и связана с незанятой фазой свободного полета пули после того, как она выходит из ствола пистолета и до того, как попадет в цель, поэтому она находится между переходной баллистикой и баллистикой терминала. Однако внешняя баллистика также касается свободного полета ракет и других снарядов, таких как шары, стрелы и так далее.

Терминальная баллистика - это исследование поведения и эффектов снаряда, когда он достигает цели. Данная категория имеет значение как для снарядов малого калибра, так и для снарядов большого калибра (стрельба из артиллерии). Изучение чрезвычайно высоких скоростных воздействий все еще очень новое и в настоящее время применяется в основном к проектированию космических аппаратов.

Судебная баллистика

Судебная баллистика включает в себя анализ пуль и пулевых воздействий для определения информации об использовании в суде или в другой части правовой системы. Отдельно от информации о баллистике, экзамены по огнестрельному оружию и инструментальной метке («баллистическая отпечатка пальца») предусматривают анализ доказательств огнестрельного оружия, боеприпасов и инструментов, чтобы установить, использовалось ли какое-либо огнестрельное оружие или инструмент при совершении преступления.

Астродинамика: орбитальная механика

Астродинамика - применение баллистики оружия, внешней и внутренней, и орбитальной механики к практическим проблемам движения ракет и других космических аппаратов. Движение этих объектов, как правило, рассчитывается из законов движения Ньютона и закона всемирного тяготения. Это основная дисциплина в области проектирования и контроля космической миссии.

Путешествие снаряда в полете

Основы внешней и внутренней баллистики касаются путешествия снаряда в полете. Путь полета пули включает: движение вниз по стволу, путь по воздуху и путь через цель. Основы внутренней баллистики (или исходной, внутри пушки) различаются в соответствии с типом оружия. Пули, выпущенные из винтовки, будут иметь больше энергии, чем аналогичные пули, выпущенные из пистолета. Еще больше порошка можно также использовать в ружейных патронах, потому что пулевые камеры могут быть спроектированы так, чтобы выдерживать большее давление.

Для более высокого давления требуется более крупная пушка с большей отдачей, которая медленнее загружается и генерирует больше тепла, что приводит к большему износу металла. На практике трудно измерить силы внутри ствола орудия, но один легко измеряемый параметр - это скорость, с которой пуля выходит из ствола (начальная скорость). Регулируемое расширение газов от горящего пороха создает давление (сила/площадь). Здесь находится база пули (эквивалентная диаметру ствола) и является постоянной. Поэтому энергия, передаваемая пуле (с заданной массой), будет зависеть от массового времени, умноженного на временной интервал, на котором применяется сила.

Последний из этих факторов является функцией длины ствола. Пулевое движение через пулеметное устройство характеризуется увеличением ускорения, когда расширяющиеся газы нажимают на него, но уменьшают давление в стволе при расширении газа. До точки уменьшения давления, чем дольше баррель, тем больше ускорение пули. Когда пуля проходит по стволу пистолета, происходит небольшая деформация. Это происходит из-за незначительных (редко крупных) недостатков или вариаций в нарезке или меток в стволе. Главной задачей внутренней баллистики является создание благоприятных условий для избежания подобных ситуаций. Эффект на последующей траектории полета пули обычно незначителен.

От пушки до цели

Внешнюю баллистику кратко можно назвать путешествием от пушки до цели. Пули обычно не следуют по прямой линии к цели. Действуют вращательные силы, которые удерживают пулю от прямой оси полета. Основы внешней баллистики включают такое понятие, как прецессия, которая относится к вращению пули вокруг центра масс. Нутация - это небольшое круговое движение на кончике пули. Ускорение и прецессия уменьшаются по мере увеличения расстояния от пули от ствола.

Одной из задач внешней баллистики является создание идеальной пули. Чтобы уменьшить сопротивление воздуха, идеальная пуля была бы длинной тяжелой иглой, но такой снаряд прошел бы прямо через цель, не рассеивая большую часть своей энергии. Сферы будут отставать и высвобождать больше энергии, но могут даже не попасть в цель. Хорошая аэродинамическая компромиссная форма пули - это параболическая кривая с низкой лобовой областью и формой ветвления.

Лучшей пулевой композицией является свинец, который имеет высокую плотность и дешев для получения. Его недостатки - тенденция к размягчению со скоростью > 1000 кадра в секунду, что приводит к тому, что он смазывает ствол и уменьшает точность, также свинец имеет тенденцию полностью расплавиться. Легирование свинца (Pb) с небольшим количеством сурьмы (Sb) помогает, но реальный ответ заключается в том, чтобы связать свинцовую пулю с жестким стальным бочонком через другой металл, достаточно мягкий, чтобы запечатать пулю в стволе, но с высокой температурой плавления. Медь (Cu) лучше всего подходит для этого материала в качестве «пиджака» для свинца.

Баллистика терминалов (попадание в цель)

Короткая, высокоскоростная пуля начинает резко рычать, поворачиваться и даже вращаться при входе в ткань. Это приводит к тому, что больше ткани смещается, увеличивается сопротивление и придает большую часть кинетической энергии цели. Более длинная, более тяжелая пуля может иметь больше энергии в более широком диапазоне, когда она попадает в цель, но она может проникать так хорошо, что она выходит из цели с большей частью своей энергии. Даже пуля с низкой кинетикой может принести значительный урон ткани. Пули производят повреждение тканей тремя способами:

  1. Разрушение и дробление. Диаметр повреждения при раздавливании в ткани - это диаметр пули или фрагмента, вплоть до длины оси.
  2. Кавитация - «постоянная» полость вызвана траекторией (дорожкой) самой пули с дроблением ткани, тогда как «временная» полость образована радиальным растяжением вокруг пулевой дорожки от непрерывного ускорения среды (воздуха или ткани) в результате пули, заставляя раневую полость растягиваться наружу. Для снарядов, движущихся с низкой скоростью, постоянные и временные полости почти одинаковы, но с большой скоростью и с пулевым рысканием временная полость становится больше.
  3. Ударные волны. Ударные волны сжимают среду и движутся впереди пули, а также по сторонам, но эти волны длится всего несколько микросекунд и не вызывают глубоких разрушений с малой скоростью. При большой скорости генерируемые ударные волны могут достигать до 200 атмосфер давления. Однако перелом кости из-за кавитации является чрезвычайно редким событием. Баллистическая волна давления от дальнего пулевого удара может вызвать у человека сотрясение, что вызывает острые неврологические симптомы.

Экспериментальные методы для демонстрации повреждения тканей использовали материалы с характеристиками, подобными мягким тканям и коже человека.

Дизайн пули

Конструкция пули важна в потенциале ранения. Гаагская конвенция 1899 года (и впоследствии Женевская конвенция) запрещала использование расширяющихся, деформируемых пуль в военное время. Поэтому у военных пуль есть металлическое облачение вокруг свинцового ядра. Разумеется, договор был в меньшей степени связан с соблюдением, чем тот факт, что современные военные штурмовые винтовки стреляют снарядами с высокой скоростью, а пули должны быть покрыты медной оболочкой, поскольку свинец начинает плавиться из-за тепла, создаваемого со скоростью > 2000 кадров в секунду.

Внешняя и внутренняя баллистика ПМ (пистолета Макарова) отличается от баллистики так называемых «разрушаемых» пуль, предназначенных для разрушения при ударе по твердой поверхности. Такие пули обычно изготавливают из металла, отличного от свинца, такого как медный порошок, уплотненный в виде пули. Расстояние мишени от дула играет большую роль в способности к ранению, поскольку большинство пуль, выпущенных из пистолетов, потеряли значительную кинетическую энергию (КЭ) на расстоянии 100 ярдов, в то время как высокоскоростные военные орудия по-прежнему имеют значительный КЭ даже на 500 ярдах. Таким образом, внешняя и внутренняя баллистика ПМ и военных и охотничьих ружей, предназначенных для доставки пуль с большим количеством КЭ на большее расстояние, будут различаться.

Проектирование пули для эффективной передачи энергии конкретной цели не является простым, поскольку цели отличаются. Понятие внутренней и внешней баллистики включает в себя также дизайн снаряда. Чтобы проникнуть в толстую шкуру и жесткую кость слона, пуля должна быть небольшого диаметра и достаточно прочной, чтобы противостоять дезинтеграции. Однако такая пуля проникает в большинство тканей, как копье, нанося немного больше урона, чем ножевая рана. Пуля, предназначенная для повреждения тканей человека, потребует определенных «тормозов», чтобы вся КЭ передавались цели.

Легче конструировать функции, которые помогают замедлить большую, медленную движущуюся пулю в тканях, чем небольшая, высокоскоростная пуля. К таким мерам относятся модификации формы, такие как круглая, сплющенная или куполообразная. Круглые носовые пули обеспечивают наименьшее торможение, обычно покрыты оболочкой и полезны главным образом в пистолетах с малой скоростью. Сплющенная конструкция обеспечивает наибольшее торможение только от формы, не покрывается оболочкой и используется в пистолетах с малой скоростью (часто для целевой практики). Конструкция купола является промежуточной между круглым и режущим инструментом и полезна при средней скорости.

Конструкция пули полых точек облегчает поворот пули «наизнанку» и выравнивание фронта, называемое «расширением». Расширение надежно происходит только при скоростях, превышающих 1200 кадров в секунду, поэтому подходит только для пистолетов с максимальной скоростью. Разрушаемая пуля, состоящая из порошка, предназначена для дезинтеграции при ударе, доставки всего КЭ, но без значительного проникновения, размер фрагментов должен уменьшаться по мере увеличения скорости удара.

Потенциал ранения

Тип ткани влияет на потенциал ранения, а также на глубину проникновения. Удельный вес (плотность) и эластичность являются основными тканевыми факторами. Чем выше удельный вес, тем больший урон. Чем больше эластичность, тем меньше урон. Таким образом, легкая ткань с низкой плотностью и высокой эластичностью повреждается меньше мышц с более высокой плотностью, но с некоторой эластичностью.

Печень, селезенка и мозг не имеют эластичности и легко травмируются, как и жировая ткань. Заполненные жидкостью органы (мочевой пузырь, сердце, большие сосуды, кишечник) могут лопнуть из-за создаваемых волн давления. Пуля, поражающая кость, может привести к фрагментации кости и / или к образованию многочисленных вторичных ракет, каждая из которых вызывает дополнительное ранение.

Баллистика пистолета

Это оружие легко скрывается, но трудно прицелиться точно, особенно в местах преступления. Большинство стрельб из стрелкового оружия происходят на расстоянии менее 7 ярдов, но даже в этом случае большинство пуль пропускают намеченную цель (только 11% патронов нападавших и 25% пуль, выпущенных полицейскими, попадают в намеченную цель в одном исследовании). Обычно оружие низкого калибра используется в преступлениях, потому что они дешевле и легче носить и легче контролировать во время стрельбы.

Уничтожение тканей может быть увеличено любым калибром с использованием пули с расширяющимися полыми точками. Двумя основными переменными в баллистике пистолетов являются диаметр пули и объем пороха в корпусе картриджа. Картриджи более старого дизайна были ограничены давлениями, которые они могли выдержать, но достижения в металлургии позволили удвоить и утроить максимальное давление, чтобы можно было генерировать больше кинетической энергии.