Случайные функции. Численные характеристики случайной функции

Предварительные замечания. Найдем изображение Фурье от d -функции.

Очевидно, справедливо и обратное преобразование Фурье:

А также:

1. Пусть процесс представляет собой постоянную величину x(t)=A o . Как уже было выяснено ранее, корреляционная функция такого процесса равна Найдем спектральную плотность процесса путем прямого преобразования Фурье функции R(t):

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат. Таким образом, если в процессе присутствует только одна частота w =0, то это значит, что вся мощность процесса сосредоточена на этой частоте, что и подтверждает вид функции S(w). Если случайная функция содержит постоянную составляющую, т.е. среднее значение , то S(w) будет иметь разрыв непрерывности в начале координат и будет характеризоваться наличием d -функции в точке w =0.

2. Для гармонической функции X=A o sin(w 0 t+j) корреляционная функция:

Спектральная плотность равна

График S(w) будет иметь два пика типа импульсной функции, расположенных симметрично относительно начала координат при w= +w 0 и w= -w 0 . Это говорит о том, что мощность процесса сосредоточена на двух частотах +w 0 и -w 0 .

Если случайная функция имеет гармонические составляющие, то спектральная плотность имеет разрывы непрерывности в точках w = ±w 0 и характеризуется наличием двух дельта-функций, расположенных в этих точках.

Белый шум . Под белым шумом понимают случайный процесс, имеющий одинаковые значения спектральной плотности на всех частотах от -¥ до +¥ : S(w ) = Const.

Примером такого процесса при определенных допущениях являются тепловые шумы, космическое излучение и др. Корреляционная функция такого процесса равна

Таким образом R(t) представляет собой импульсную функцию, расположенную в начале координат.

Этот процесс является чисто случайным процессом, т.к. при любом t ¹0 отсутствует корреляция между последующими и предыдущими значениями случайной функции. Процесс с такой спектральной плотностью является физически нереальным, т.к. ему соответствуют бесконечно большие дисперсия и средний квадрат случайной величины:

Такому процессу соответствует бесконечно большая мощность и источник с бесконечно большой энергией.

2. Белый шум с ограниченной полосой частот. Такой процесс характеризуется спектральной плотностью вида

S(w)=C при ½w½ <w n ,

S(w) =0 при ½w½>w n .

где (-w n , w n) полоса частот для спектральной плотности.

Это такой случайный процесс, спектральная плотность которого остается практически постоянной в диапазоне частот, могущих оказать влияние на рассматриваемую систему управления, т.е. в диапазоне частот, пропускаемых системой. Вид кривой S (w ) вне этого диапазона не имеет значения, т.к. часть кривой, соответствующая высшим частотам, не окажет влияния на работу системы. Этому процессу соответствует корреляционная функция

Дисперсия процесса равна

5. Типовой входной сигнал следящей системы. В качестве типового сигнала принимают сигнал, график которого показан на рис.63. Скорость вращения задающего вала следящей системы сохраняет постоянное значение в течение некоторых интервалов времени t 1 , t 2 ,...

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона. Математическое ожидание

Рис.63. Типовой сигнал

График такого вида получается в первом приближении при слежении РЛС за движущейся целью. Постоянные значения скорости соответствуют движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Пусть m -среднее число перемен скорости за 1 с. Тогда Т=1/m будет среднее значение интервалов времени, в течение которых угловая скорость сохраняет свое постоянное значение. Применительно к РЛС это значение будет средним временем движения цели по прямой. Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого значения могут быть два случая.

1. Моменты времени t и t+t относятся к одному интервалу. Тогда среднее произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

2. Моменты времениt и t+t относятся к разным интервалам. Тогда среднее произведения скоростей будет равно нулю, так как величины W(t) и W(t+t) для разных интервалов можно считать независимыми величинами:

Корреляционная функция равна:

где, Р 1 - вероятность нахождения моментов времени t и t+t в одном интервале, а Р 2 =1- Р 1 вероятность нахождения их в разных интервалах.

Оценим величину Р 1 . Вероятность появления перемены скорости на малом интервале времени Dt пропорциональна этому интервалу и равна mDt или Dt/Т. Вероятность отсутствия перемены скорости для этого же интервала будет равна 1-Dt/Т. Для интервала времени t вероятность отсутствия перемены скорости т.е. вероятность нахождения моментов времени t и t+t в одном интервале постоянной скорости будет равна произведению вероятности отсутствий перемены скорости на каждом элементарном промежутке Dt, т.к. эти события независимые. Для конечного промежутка получаем, что число промежутков равно t/Dt и

Перейдя к пределу, получим

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj( 4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .

Лабораторная работа № 4

СЛУЧАЙНЫЕ ПРОЦЕССЫ
И ИХ ХАРАКТЕРИСТИКИ

4.1. ЦЕЛЬ РАБОТЫ

Ознакомление с основными понятиями теории случайных процессов. Выполнение измерений моментных характеристик и оценки ПРВ мгновенных значений случайных процессов. Анализ вида автокорреляционной функции (АКФ) и спектральной плотности мощности (СПМ) случайного процесса. Исследование преобразований случайного процесса линейными стационарными и нелинейными безынерционными цепями.

4.2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Случайные события и случайные величины
Событие , которое может произойти или не произойти в некотором опыте, называется случайным событием и характеризуется вероятностью осуществления
. Случайная величина (СВ)
может принять в опыте одно значение из некоторого множества
; это значение называется реализацией данной СВ. может быть, например, множеством вещественных чисел или его подмножеством. Если множество конечно или счетно (дискретная СВ), можно говорить о вероятности
осуществления события, которое заключается в принятии случайной величиной значения , т. е. на множестве значений дискретной случайной величины задается распределение вероятностей . Если множество несчетно (например, вся вещественная прямая), то полное описание случайной величины дает функция распределения, определяемая выражением

,

где
. Если функция распределения непрерывна и дифференцируема, то можно определить плотность распределения вероятностей (ПРВ), называемую также для краткости плотностью вероятности
(а иногда просто плотностью):

, при этом
.

Очевидно, функция распределения – неотрицательная неубывающая функция со свойствами
,
. Следовательно,
ПРВ – неотрицательная функция, удовлетворяющая условию нормировки
.

Иногда ограничиваются числовыми характеристиками случайной величины, чаще всего моментами . Начальный момент -го порядка (-й начальный момент)

,

где горизонтальная черта и
– символические обозначения интегрального оператора усреднения по ансамблю . Первый начальный момент
, называется математическим ожиданием или центром распределения.

Центральный момент -го порядка (-й центральный момент)

Наиболее употребительным из центральных моментов является второй центральный момент, или дисперсия

Вместо дисперсии часто оперируют среднеквадратическим отклонением (СКО) случайной величины
.

^ Средний квадрат , или второй начальный момент
, связан с дисперсией и математическим ожиданием:

Для описания формы ПРВ используют коэффициент асимметрии
и коэффициент эксцесса
(иногда эксцесс характеризуют величиной
).

Часто используется нормальное, или гауссовское (гауссово), распределение с ПРВ

,

где и – параметры распределения (математическое ожидание и СКО соответственно). Для гауссовского распределения
,
.

Две случайные величины и характеризуются совместной плотностью распределения
. Числовыми характеристиками совместной плотности служат начальные и центральные смешанные моменты

,
,

где и – произвольные целые положительные числа;
и математические ожидания СВ x и y .

Наиболее часто используются смешанные моменты второго порядка – начальный (корреляционный момент):

и центральный (ковариационный момент, или ковариация )

.

Для пары гауссовских случайных величин двумерная совместная ПРВ имеет вид

где , – среднеквадратические отклонения;
– математические ожидания; коэффициент корреляции – нормированный ковариационный момент

.

При нулевом коэффициенте корреляции очевидно,

,

т. е. некоррелированные гауссовские случайные величины независимы.
^

Случайные процессы

Случайный процесс – это последовательность случайных величин, упорядоченная по возрастанию некоторой переменной (чаще всего времени). Перейти от описания случайной величины к описанию случайного процесса можно, рассматривая совместные распределения двух, трех и более значений процесса в некоторые различные моменты времени. В частности, рассматривая процесс в временных сечениях (при
), получаем -мерные совместные функцию распределения и плотность распределения вероятностей случайных величин

, определяемые выражением

.

Случайный процесс считается полностью определенным, если для любого можно записать его совместную ПРВ при любом выборе моментов времени
.

Часто при описании случайного процесса можно ограничиться совокупностью его смешанных начальных моментов (если они существуют, т.е. сходятся соответствующие интегралы)

и смешанных центральных моментов

при целых неотрицательных
и целом .

В общем случае моменты совместной ПРВ зависят от расположения сечений на оси времени и называются моментными функциями . Чаще всего используют второй смешанный центральный момент

,

называемый функцией автокорреляции или автокорреляционной функцией (АКФ). Напомним, что здесь и далее явно не указана зависимость от времени, а именно – функциями времени являются
,
и
.

Можно рассматривать совместно два случайных процесса
и
; такое рассмотрение предполагает их описание в виде совместной многомерной ПРВ, а также в виде совокупности всех моментов, в том числе смешанных. Наиболее часто при этом используют второй смешанный центральный момент

,

называемый взаимно корреляционной функцией
.

Среди всех случайных процессов выделяют СП, для которых совместная -мерная ПРВ не изменяется при одновременном изменении (сдвиге) всех временных сечений на одну и ту же величину. Такие процессы называются стационарными в узком смысле или строго стационарными .

Чаще рассматривают более широкий класс случайных процессов с ослабленным свойствам стационарности. СП называется стационарным в широком смысле , если при одновременном сдвиге сечений не изменяются лишь его моменты не выше второго порядка. Практически это означает, что СП стационарен в широком смысле, если он имеет постоянные среднее (математическое ожидание ) и дисперсию
, а АКФ зависит только от разности моментов времени, но не от их положений на временнóй оси:

1)
,

2) ,
.

Заметим, что
, откуда и следует постоянство дисперсии.

Нетрудно убедиться, что процесс, стационарный в узком смысле, стационарен и в широком смысле. Обратное утверждение вообще неверно, хотя существуют процессы, для которых стационарность в широком смысле влечет стационарность в узком смысле.

Совместная -мерная ПРВ отсчетов
гауссовского процесса, взятых во временных сечениях , имеет вид

, (4.1)

где – определитель квадратной матрицы, составленной из попарных коэффициентов корреляции отсчетов;
– алгебраическое дополнение элемента этой матрицы.

Совместная гауссовская ПРВ при любом полностью определяется математическими ожиданиями, дисперсиями и коэффициентами корреляции отсчетов, т. е. моментными функциями не выше второго порядка. Если гауссовский процесс стационарен в широком смысле, то все математические ожидания одинаковы, все дисперсии (а значит, и СКО) равны друг другу, а коэффициенты корреляции определяются только тем, насколько временные сечения отстоят друг от друга. Тогда, очевидно, ПРВ (4.1) не изменится, если все временные сечения сдвинуть влево или вправо на одну и ту же величину. Отсюда следует, что гауссовский процесс, стационарный в широком смысле, стационарен и в узком смысле (строго стационарен).

Среди строго стационарных случайных процессов часто выделяют более узкий класс эргодических случайных процессов. Для эргодических процессов моменты, найденные усреднением по ансамблю, равны соответствующим моментам, найденным усреднением по времени:

,

(здесь – символическое обозначение оператора усреднения по времени).

В частности, для эргодического процесса математическое ожидание, дисперсия и АКФ равны соответственно

,

,

Эргодичность весьма желательна, так как дает возможность практически измерять (оценивать) числовые характеристики случайного процесса. Дело в том, что обычно наблюдателю доступна лишь одна (хотя, возможно, достаточно длинная) реализация случайного процесса. Эргодичность означает, по существу, что эта единственная реализация является полноправным представителем всего ансамбля .

Измерение характеристик эргодического процесса может быть выполнено при помощи простых измерительных устройств; так, если процесс представляет собой напряжение, зависящее от времени, то вольтметр магнитоэлектрической системы измеряет его математическое ожидание (постоянную составляющую), вольтметр электромагнитной или термоэлектрической системы, подключенный через разделительную емкость (для исключения постоянной составляющей), – его среднеквадратическое значение (СКО). Устройство, структурная схема которого показана на рис. 4.1, позволяет измерить значения функции автокорреляции при различных . Фильтр нижних частот играет здесь роль интегратора, конденсатор выполняет центрирование процесса, так как не пропускает постоянную составляющую тока. Это устройство называется коррелометром .


Рис. 4.1

Достаточными условиями эргодичности стационарного случайного процесса служат условие
, а также менее сильное условие Слуцкого
.
^

Дискретные алгоритмы оценивания параметров СП

Приведенные выше выражения для нахождения оценок параметров СП и корреляционной функции справедливы для непрерывного времени. В данной лабораторной работе (как и во многих современных технических системах и приборах) аналоговые сигналы генерируются и обрабатываются цифровыми устройствами, что приводит к необходимости некоторого изменения соответствующих выражений. В частности, для определения оценки математического ожидания используется выражение выборочного среднего

,

где
– последовательность отсчетов процесса (выборка объема
). Оценкой дисперсии служит выборочная дисперсия , определяемая выражением

.

Оценка автокорреляционной функции, иначе называемая коррелограммой , находится как

.

Оценкой плотности распределения вероятностей мгновенного значения ССП служит гистограмма . Для ее нахождения диапазон возможных значений СП разбивается на интервалов равной ширины, затем для каждого -го интервала подсчитывается количество отсчетов выборки, попавших в него. Гистограмма представляет собой набор чисел
, обычно изображаемый в виде решетчатой диаграммы. Количество интервалов при заданном объеме выборки выбирается исходя из компромисса между точностью оценивания и разрешением (степенью подробности) гистограммы.
^

Корреляционно-спектральная теория случайных процессов

Если интересоваться только моментными характеристиками первого и второго порядка, которые определяют свойство стационарности в широком смысле, то описание стационарного СП осуществляется на уровне автокорреляционной функции
и спектральной плотности мощности
, связанных парой преобразований Фурье (теорема Винера–Хинчина ):

,
.

Очевидно, СПМ – неотрицательная функция. Если процесс имеет ненулевое математическое ожидание , то к СПМ добавляется слагаемое
.

Для вещественного процесса АКФ и СПМ – четные вещественные функции.

Иногда можно ограничиться числовыми характеристиками – интервалом корреляции и эффективной шириной спектра. ^ Интервал корреляции определяют по-разному, в частности, известны следующие определе

o Случайной функцией называется функция X(t), значение которой при любом значении аргумента t является случайной величиной.

Другими словами, случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, при этом заранее не известно, какой именно.

o Конкретный вид, принимаемый случайной величиной в результате опыта, называется реализацией случайной функции.

Т.к. на практике аргумент t чаще всего является временным, то случайную функцию иначе называют случайным процессом.

На рисунке изображено несколько реализаций некоторого случайного процесса.

Если зафиксировать значение аргумента t, то случайная функция X(t) превратится в случайную величину, которую называют сечением случайной функции , соответствующим моменту времени t. Будем считать распределение сечения непрерывным. Тогда Х(t) при данном t определяется плотностью распределения p(x; t).

Очевидно, p(x; t) не является исчерпывающей характеристикой случайной функции X(t), поскольку она не выражает зависимости между сечениями X(t) в разные моменты времени t. Более полную характеристику дает функция -совместная плотность распределения системы случайных величин , где t 1 и t 2 -произвольные значения аргумента t случайной функции. Еще более полную характеристику случайной функции X(t) даст совместимая плотность распределения системы трех случайных величин и т.д.

o Говорят, что случайный процесс имеет порядок n , если он полностью определяется плотностью совместимого распределения n произвольных сечений процесса, т.е. системы n случайных величин , где X(t i)-сечение процесса, отвечающее моменту времени t i , но не определяется заданием совместного распределения меньшего, чем n, числа сечений.

o Если плотность совместного распределения произвольных двух сечений процесса вполне его определяет, то такой процесс называется марковским.

Пусть имеется случайная функция X(t). Возникает задача описания ее с помощью одной или нескольких неслучайных характеристик. В качестве первой из них естественно взять функцию -математическое ожидание случайного процесса. В качестве второй берется среднее квадратическое отклонение случайного процесса .

Эти характеристики являются некоторыми функциями от t. Первая из них-это средняя траектория для всех возможных реализаций. Вторая характеризует возможный разброс реализаций случайной функции около средней траектории. Но и этих характеристик недостаточно. Важно знать зависимость величин X(t 1) и X(t 2). Эту зависимость можно характеризовать с помощью корреляционной функции или корреляционного момента.

Пусть имеются два случайных процесса, по нескольку реализаций которых изображено на рисунках.

У этих случайных процессов примерно одинаковые математические ожидания и средние квадратичные отклонения. Тем не менее это различные процессы. Всякая реализация для случайной функции X 1 (t) медленно меняет свои значения с изменением t, чего нельзя сказать о случайной функции X 2 (t). У первого процесса зависимость между сечениями X 1 (t) и будет больше, чем зависимость для сечений X 2 (t) и второго процесса, т.е. убывает медленнее, чем , при увеличении Δt. Во втором случае процесс быстрее «забывает» свое прошлое.

Остановимся на свойствах корреляционной функции, которые вытекают из свойств корреляционного момента пары случайных величин.

Свойство 1. Свойство симметричности .

Свойство 2. Если к случайной функции X(t) прибавить неслучайное слагаемое , то от этого корреляционная функция не изменится, т.е. .

Действительно,

Свойство 3. , где -неслучайная функция.